CONCLUSION AND FUTURE
PERSPECTIVES
Personalized medicine for effective
treatment of NSCLC patients with EGFR
mutations, ALK rearrangements and/or
mutations, ROS1 rearrangements, RET
rearrangements, BRAF mutations, KRAS
mutations, NRAS mutations, PIK3CA
mutations, DDR2 mutations, MET mutations
and ERBB2 mutations has become the
international standard of care for NSCLC
patients (Fig. 1, Table 1). However,
standardization and validation of detection
methods for oncogenic drivers in NSCLC
patients is very essential for accurate and
reproducible results. Next-generation
sequencing (NGS), a powerful detection
method, will offer the vision of personalized
medicine where an individual’s treatment can
be based on that patient’s individual
molecular profile, rather than on historical
population-based medicine. NGS will be also
the powerful method to identify new
biomarkers for early diagnosis of lung cancer
and is increasingly used to guide
personalized treatments decisions for
NSCLC patients.
15 trang |
Chia sẻ: hachi492 | Lượt xem: 14 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Personalized medicine for effective treatment of nonsmall - Cell lung cancer with targeted therapies, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ACADEMIA JOURNAL OF BIOLOGY 2020, 42(3): 119–133
DOI: 10.15625/2615-9023/v42n3.14883
119
PERSONALIZED MEDICINE FOR EFFECTIVE TREATMENT OF NON-
SMALL-CELL LUNG CANCER WITH TARGETED THERAPIES
Duong Hong Quan
Laboratory Center, Hanoi University of Public Health, Hanoi, Vietnam
Received 10 March 2020, accepted 10 August 2020
ABSTRACT
Lung cancer is the most common cause of cancer death worldwide, with most deaths having
distant metastases. It has become increasingly complex to get effective treatment for lung
cancer patients. While generalized medicine with traditional therapy resulted in comparatively
poor response, personalized medicine has been well known to be an important strategy for
effective treatment of lung cancer, with current focus on significant detection of clinical
oncogenic drivers responsible for tumor initiation and maintenance and development of drug
resistance. In lung cancer, especially in non-small-cell lung cancer (NSCLC), EGFR, ALK,
RET, ROS1, BRAF, KRAS, NRAS, PIK3CA, DDR2, MET, ERBB2 have been reported to be
key oncogenic drivers, which are targeted in the development and application of targeted
therapeutic drugs. Personalized medicine based on these oncogenic drivers is highly
recommended for treatment of advanced NSCLC patients. In this article, the significant
application of personalized medicine based on the key oncogenic drivers for effective treatment
of NSCLC with targeted therapeutic drugs is reviewed.
Keywords: Personalized medicine, targeted therapy, non-small-cell lung cancer, treatment.
Citation: Duong Hong Quan, 2020. Personalized medicine for effective treatment of non-small-cell lung cancer with
targeted therapies. Academia Journal of Biology, 42(3): 119–133. https://doi.org/10.15625/2615-9023/v42n3.14883.
Corresponding author email: dhq@huph.edu.vn
©2020 Vietnam Academy of Science and Technology (VAST)
Duong Hong Quan
120
INTRODUCTION
Lung cancer is the most frequently
diagnosed human malignant tumor and
remains the highest cancer-related cause of
mortality in both sexes with approximately
2.1 million newly diagnosed cancer cases and
1.8 million cancer related-deaths each year
worldwide (Bray et al., 2018). In 2018, there
were 23667 newly diagnosed cases and
20710 deaths from this cancer in Vietnam.
Despite significant advances made in both
diagnostic and treatment approaches in recent
years, the average 5 years survival rate
remains at only 16% because the diagnosis is
only conducted at advanced stages and
consequently, patients have a very poor
prognosis (Bray et al., 2015; Gridelli et al.,
2015). Based on histopathological features,
non-small-cell lung cancer (NSCLC) and
small cell lung cancer (SCLC) accounts for
85% and 15% of all patients with lung cancer,
respectively (Travis et al., 2013). NSCLC is
divided into subtypes, being adenocarcinoma
(ADC) and squamous cell carcinoma (SCC)
(Travis et al., 2013). Furthermore, ADC
represents 50% of cases among all lung
cancer subtypes (Travis et al., 2013).
Personalized medicine, as defined by the
National Cancer Institute (NCI), is a form of
medicine using personal information about
genes, proteins and environments for
prevention, diagnosis and treatment of disease.
Therefore, personalized medicine for NSCLC
takes into consideration specific characteristics
of each patient’s tumor to prescribe the most
effective approach for treatment. Especially,
there has been a major change in the empirical
treatment of NSCLC from using one drug for
all to a targeted therapy by using the most
effective drug for each patient (Li et al., 2013;
Reungwetwattana & Dy, 2013). Furthermore,
most advances in treatment using targeted
therapy in NSCLC occurred in ADC due to the
identification of targetable mutations being
more common than in SCC. In NSCLC,
personalized medicine based on targetable
profiles of tumor such as EGFR (EGFR
mutation, 20−30%), ALK (ALK rearrangement,
1‒10%), RET (RET rearrangement, 1−2%),
ROS1 (ROS1 rearrangement, 1−2%), BRAF
(BRAF mutation, 2−5%), KRAS (KRAS
mutations, 32%), NRAS (NRAS mutation,
2−3%), PIK3CA (PI3KCA mutation, 5−6%),
DDR2 (DDR2 mutation, 4%), MET (MET exon
14 skipping, 1−3%) and ERBB2 (ERBB2
amplication, 1−3% and ERBB2 mutation,
2−4%) have been identified for effective
treatment of NSCLC patients (Sharma et al.,
2007; Suh et al., 2016; Rosas et al., 2019; Du et
al., 2018; Bergethon et al., 2012; Lin, Shaw,
2017; Takeuchi et al., 2012; Farago, Azzoli,
2017; Guo et al., 2019; O’Leary et al., 2019;
Aviel-Ronen et al., 2006; Vuong et al., 2018; Li
et al., 2016).
Personalized medicine has been
considered and integrated as a routine best
practice for NSCLC patients with advanced
stage from the year 2000 (Pfister et al., 2004).
Then, to better understand the significant role
of personalized medicine in NSCLC, this
review summarizes the current personalized
medicine strategies for effective treatment of
NSCLC patients.
PERSONALIZED MEDICINE BASED ON
TARGETABLE PROFILE OF TUMOR
EGFR mutation
EGFR, a transmembrane receptor protein
with tyrosine kinase activity, has been well
known to be involved in the pathogenesis of
various types of cancer including NSCLC.
Therefore, EGFR is the most attractive target
for development of targeted therapy to treat
cancer. The EGFR mutation, found in
20−30% of NSCLC with adenocarcinoma,
showed potential for targeted therapies in
clinical trials for the treatment of NSCLC
(Sharma et al., 2007; Suh et al., 2016). The
EGFR mutation is more prevalent in non-
smokers and in the Asian population (Sharma
et al., 2007; Shi et al., 2014).
Exon 19 deletion, exon 19 insertion, exon
20 insertion and missense mutation are four
main types of EGFR mutations (Sharma et al.,
2007). Of these, two most common mutation
contents of EGFR, being exon 19 deletion
(delE746-A750) and exon 21 missense
mutation (L858R), are found in 90% of EGFR
Personalized medicine for effective treatment
121
mutations in NSCLC patients with
adenocarcinoma. The second most common
mutations of EGFR are frame deletion in exon
19 or point mutations in exon 18 and exon 21.
The third most common mutation of EGFR is
exon 20 insertion (Sharma et al., 2007).
Targeted therapeutic drugs have been used
for effective treatment of NSCLC patients with
indicated EGFR mutation (Table 1). However,
all NSCLC patients harboring EGFR mutation
will eventually become resistant to Erlotinib
and Gefitinib (first-generation EGFR
inhibitors). Acquired resistance due to the
T790M mutation in exon 20 of EGFR is
detected in 50−60% of cases with secondary
resistance to first-generation EGFR inhibitors
(Chong & Jänne, 2013). Afatinib and
Dacomitinib (second-generation EGFR
inhibitors) have been developed for such cases
(Li et al., 2008). However, NSCLC patients
with T790M would also develop resistance to
Afatinib. Osimertinib, a third-generation
EGFR inhibitor developed to treat NSCLC
patients previously treated with Afatinib, is
now approved by FDA, and recommended for
treatment of EGFR T790M positive NSCLC
patients (Mok et al., 2017).
ALK rearrangement and/or mutation
ALK, a transmembrane tyrosine kinase
receptor, was identified specifically in
NSCLC (Rikova et al., 2007). Rearrangement,
point mutation and amplification are three
types of oncogenesis in ALK.
ALK rearrangement, identified in
approximately 1−10% of NSCLC patients,
could benefit from targeted therapies for the
treatment of NSCLC (Rosas et al., 2019; Du
et al., 2018). To date, in NSCLC, 20 distinct
ALK rearrangements have been detected,
among which 11 are oncogenetic drivers,
being EML4-ALK, KIF5B-ALK, KLC1-
ALK, HIP1-ALK, BIRC6-ALK, PRKAR1A-
ALK, PPM1B-ALK, EIF2AK3-ALK,
BCL11A-ALK, CEBPZ-ALK and PICAM-
ALK (Rosas et al., 2019; Du et al., 2018).
Among these oncogenetic drivers, EML4-
ALK, found in approximately 3−13% of all
ALK arrangements, occurs most frequently in
NSCLC (Inamura et al., 2008; Shaw et al.,
2009; Sun et al., 2010; Horn & Pao, 2009; Du
et al., 2018). ALK rearrangements are
especially more common in younger
adenocarcinoma patients who are non-
smokers or light smokers (Camidge et al.,
2010; Shaw et al., 2009). Targeted therapeutic
drugs such as Crizotinib (first-generation
inhibitor of ALK and MET), Ceritinib
(second-generation inhibitor of ALK),
Alectinib (inhibitor of ALK), Brigatinib
(third-generation inhibitor of ALK and
EGFR), and Lorlatinib (third-generation
inhibitor of ALK and ROS1) have been used
for the effective treatment of NSCLC patients
with indicated ALK rearrangement and/or
mutation (Table 1).
Another main type of oncogenesis in ALK
is point mutation. Acquired resistance due to
secondary mutations of ALK in NSCLC
patients with ALK rearrangement treated with
Crizotinib, are caused by mutations in the
target ALK gene (Toyokawa & Seto, 2015; Lin
et al., 2017). The secondary mutations of ALK,
causing acquired resistance to ALK inhibitor
such as Crizotinib, are 1151Tins, L1152R,
C1156Y, F1174L, L1196M, L1198F, G1202R,
S1206Y, G1269A, I1171T, D1203N and
V1180L (Lin et al., 2017; Du et al., 2018). To
treat effectively for NSCLC patients with ALK
rearrangement previously treated with
Crizotinib, Alectinib and Ceritinib have been
developed (Shaw et al., 2014; Shaw et al.,
2016). Afterwards, NSCLC patients with ALK
rearrangement also develop resistance to
Alectinib and/or Ceritinib due to new
mutations in ALK such as as G1202R, for
which Lorlatinib has been developed
(Katayama, 2017).
ROS1 rearrangement
Rearrangement of ROS1, a receptor of the
insulin receptor family with constitutive
kinase activity, were found in NSCLC in 2007
(Rikova et al., 2007). ROS1 rearrangement,
identified in 1−2% of NSCLC, could benefit
from targeted therapies (Bergethon et al.,
2012; Lin, Shaw, 2017). To date, 14 distinct
ROS1 rearrangement have been detected in
NSCLC, being CD74-ROS1, SDC4-ROS1,
Duong Hong Quan
122
SLC34A2-ROS1, EZR-ROS1, TPM3-ROS1,
LRIG3-ROS1, FIG-ROS1, KDELR2-ROS1,
CCDC6-ROS1, MSN-ROS1, TMEM106B-
ROS1, TPD52L1-ROS1, CLTC-ROS1 and
LIMA-ROS1 (Lin, Shaw, 2017). Among these
contents of ROS1 rearrangements, CD74-
ROS1 occurs most frequently in NSCLC
(Gainor, Shaw, 2013). Crizotinib (inhibitor of
ALK and MET) has been used for the
effective treatment of NSCLC patients with
indicated the ROS1 rearrangements (Table 1).
RET rearrangement
Rearrangement in RET, a proto-oncogene,
were identified to be the result of transfection
of the NIH3T3 cells with high molecular
weight DNA of a human T-cell lymphoma
(Takahashi et al., 1985). RET rearrangements
found in 1−2% of NSCLC cases, could benefit
from targeted therapies (Takeuchi et al., 2012;
Farago, Azzoli, 2017). To date, the RET
rearrangement detected in NSCLC are
KIF5B-RET, CCDC6-RET, NCOA4-RET,
EPH5-RET and PICALM-RET (Takeuchi et
al., 2012; Farago, Azzoli, 2017). Among
these, KIF5B-RET is the most common RET
rearrangement in NSCLC (72%) (Takeuchi et
al., 2012; Kohno et al., 2012; Farago, Azzoli,
2017). Targeted therapeutic drugs such as
Cabozantinib (a multikinase inhibitor active
against VEGFR2, MET, ROS1, AXL, KIT,
TIE2 and RET), and Vandetanib (a
multikinase inhibitor active against VEGFRs,
EGFR, and RET) have been used for the
effective treatment of NSCLC patients with
indicated RET rearrangement (Table 1).
BRAF mutation
BRAF, an intracellular serine/threonine
kinase, activates the MAPK signaling pathway
to regulate cell growth and proliferation. BRAF
mutations, found in 2−5% of NSCLC cases,
could benefit from targeted therapies (Suh et
al., 2016; Guo et al., 2019; O’Leary et al.,
2019). For NSCLC, missense mutation of
BRAF, classified into V600E (90%) and non-
V600E (G469L and Y472C) subtypes, mainly
in current and former smokers (Marchetti et al.,
2011; Cardarella et al., 2013). Especially, all
NSCLC patients with the non-V600E subtypes
are heavy smokers (Cardarella et al., 2013).
Dabrafenib and/or Vemurafenib (BRAF
inhibitor) have been used for the effective
treatment of these NSCLC patients with
indicated BRAF mutations (Table 1).
KRAS mutation
KRAS, a member of the RAS family,
activates the RAF/MAPK and PI3K signaling
pathway to control cell growth and
proliferation. KRAS mutations, found in up to
32% of NSCLC cases, could benefit from
targeted therapies (Aviel-Ronen et al., 2006;
Suh et al., 2016; Guo et al., 2019). In NSCLC
the most common mutations of KRAS at
codon 12 are G12C (43%), G12V (18%) and
G12D (11%). Especially, KRAS mutation is
predominantly associated with NSCLC
patients who have adenocarcinoma and are
non-Asian smokers (Aviel-Ronen et al.,
2006). Targeted therapeutic drug such as
Trametinib (MEK1/2 inhibitor) has been used
for the effective treatment of NSCLC patients
with indicated KRAS mutations (Table 1).
Furthermore, in NSCLC, KRAS mutations
are well known as non-druggable targets that
predict resistance to EGFR inhibitors such as
Erlotinib and Gefitinib (Chong, Jänne, 2013)
and to ALK inhibitors such as Crizotinib
(Gainor et al., 2013), i.e. KRAS mutations are
mutually exclusive with EGFR mutations and
ALK rearrangements in NSCLC (Chong,
Jänne, 2013; Gainor et al., 2013).
NRAS mutation
NRAS, a member of RAS family and a
GTPase related to KRAS, regulates cell
growth, proliferation and differentiation. NRAS
mutations, identified in approximately 2−3% of
NSCLC case, could benefit from targeted
therapies (Suh et al., 2016). NRAS mutations
are more common in NSCLC patients being
current/former smokers (Ohashi et al., 2013).
Trametinib (MEK1/2 inhibitor) has been used
for effective treatment of NSCLC patients with
indicated NRAS mutations (Table 1).
PI3KCA mutation
PI3KCA, a catalytic subunit of the class
IA PI3K which is the member of a family of
Personalized medicine for effective treatment
123
heterodimeric kinases, plays an important role
in the regulation of cell growth, survival and
motility. PI3KCA amplification and mutation
are two main types of aberrant activation of
PI3K. Among them, PI3KCA mutations,
found in approximately 5−6% of NSCLC
patients, could benefit from targeted therapies
(Suh et al., 2016; Guo et al., 2019). targeted
therapeutic drugs such as Erlotinib and/or
Gefitinib (EGFR inhibitor) have been used for
the effective treatment of NSCLC patients
with indicated PI3KCA mutation (Table 1).
DDR2 mutation
DDR2, a receptor tyrosine kinase binding
collagen I and III as its endogenous ligand,
promotes cell proliferation, migration and
metastasis by regulation of EMT (Vogel et al.,
1997; Labrador et al., 2001; Walsh et al.,
2011). DDR2 mutations, found in
approximately 4% of NSCLC cases, could
benefit from targeted therapies (Suh et al.,
2016; Guo et al., 2019). Only one targeted
therapeutic drug, Dasatinib (SRC inhibitor),
has been used for the effective treatment of
NSCLC patients with indicated DDR2
mutation (Table 1).
MET mutation
MET, a transmembrane receptor tyrosine
kinase, plays an important function in
embryogenesis, tumor growth and metastasis.
Amplification, activating point mutation and
MET exon 14 skipping are three main types of
MET gene alteration. Among them, MET exon
14 skipping, reported in approximately 1−3%
of NSCLC patients, could benefit from
targeted therapies (Suh et al., 2016; Vuong et
al., 2018). Targeted therapeutic drugs such as
Crizotinib (inhibitor of MET and ALK),
Capmatinib (MET inhibitor) and/or Glesatinib
(inhibitor of MET and AXL) have been used
for the effective treatment of NSCLC patients
with indicated mutations in MET exon 14
skipping (Table 1).
ERBB2 mutation
ERBB2, a member of the ERBB family,
activates downstream signaling pathway to
drive oncogenesis in several types of cancer
including lung cancer when forming with other
members of the ERBB family as EGFR
(Yarden, Sliwkowski, 2001). ERBB2
amplication and mutations are found in 1−3%
and 2−4% of NSCLC patients, respectively
(Suh et al., 2016; Li et al., 2016). In ERBB2
aberration, exon 20 insertions could benefit
from targeted therapies. Targeted therapeutic
drugs such as Afatinib (EGFR inhibitor) and/or
Neratinib (ERBB2 inhibitor) have been used
for the effective treatment of NSCLC patients
with indicated ERBB2 mutation (Table 1).
Table 1. Personalized medicine with targeted therapeutic drugs for effective treatment of
NSCLC patients harboring targetable profile
Oncogenic
drivers
Types of
Mutation/Rearrangement
Mutations/Fusions
Targeted therapy
drugs
EGFR
Missense mutation
G719A
Erlotinib
Gefitinib
Afatinib
Dacomitinib
Osimertinib
G719S
G719C
G719D
S768I
T790M
C797S
L858R
L861Q
L861R
Exon 19 deletion mutation
K745_A750delinsK
K745_T751delinsKI
Duong Hong Quan
124
K745_E746delinsK
K745_E749delinsK
K745_A750delinsKIP
K745_T751delinsKIP
K745_T751delinsKA
K745_T751delinsK
K745_T752delinsKI
K745_T752delinsKV
E746_A750del
E746_A751del
E746_T751delinsA
E746_T752delinsA
E746_T752delinsV
E746_T752delinsD
E746_A750delinsEP
E746_T751delinsEQ
E746_A750delinsRP
E746_A750delinsQP
E746_T751delinsS
E746_T751delinsI
E746_T751delinsIP
E746_T751delinsQ
E746_T751delinsL
E746_S752delinsI
E746_S752del
E746_P753delinsLS
E746_P753delinsIS
E746_A750delinsAP
E746_A750delinsVP
E746_A751delinsVA
E746_A751delinsVP
E746_A751delinsV
E746_P753delinsVS
E746_P753delinsVQ
E746_A750delinsDP
E746_T751delinsEP
E746_T751delinsE
E746_S752delinsEQH
E746_S752delinsEQ
E746_P753delinsE
L747_E749del
L747_A750delinsP
L747_T751delinsP
L747_T751del
L747_S752del
Personalized medicine for effective treatment
125
L747_P753delinsQ
L747_T751delinsS
L747_S752delinsS
L747_P753delinsS
L747_T751delinsQ
L747_T751delinsPT
L747_T751delinsA
L747_S752delinsQ
L747_S752delinsQH
L747_K754delinsANKG
L747_K754del
L747_A755delinsAN
L747_K754delinsST
L747_A755delinsSKG
E749_E758delinsE
E749_K754delinsE
A750_E758delinsP
A750_E758delinsA
A750_I759delinsAN
T751_I759delinsS
T751_I759delinsI
T751_I759delinsN
T751_I759delinsREA
T751_I759delinsT
S752_I759del
P753_I759del
Exon 19 insertion mutation
I744_K745insKIPVAI
K745_E746insIPVAIK
K745_E746insVPVAIK
K745_E746insTPVAIK
Exon 20 insertion mutation
M766_A767insASV
M766_A767insAI
A767_S768insTLA
S768_V769insVAS
V769_D770insGVV
V769_D770insGSV
V769_D770insDNV
V769_D770insCV
V769_D770insASV
D770_N771insY
D770_N771insSVD
D770_N771insNPH
D770_N771insN
D770_N771insGT
D770_N771insGL
Duong Hong Quan
126
D770_N771insGF
D770_N771insGD
D770_N771insG
D770_N771insAPW
N771delinsTH
N771delinsSH
N771delinsSGH
N771_P772insRH
N771_P772insN
N771_P772insH
P772_H773insV
P772_H773insTHP
P772_H773insHV
H773_V774insQ
H773_V774insPH
H773_V774insNPH
H773_V774insH
H773_V774insAH
V774_C775insHV
ALK
Rearrangement
EML4-ALK
Crizotinib
Ceritinib
Alectinib
Lorlatinib
KIF5B-ALK
KLC1-ALK
HIP1-ALK
BIRC6-ALK
PRKAR1A-ALK
PPM1B-ALK
EIF2AK3-ALK
BCL11A-ALK
CEBPZ-ALK
PICAM-ALK
Missense mutation
1151Tins
L1152R
C1156Y
F1174L
L1196M
L1198F
G1202R
S1206Y
G1269A
I1171T
D1203N
V1180L
ROS1 Rearrangement
CD74-ROS1
Crizotinib SDC4-ROS1
SLC34A2-ROS1
Personalized medicine for effective treatment
127
EZR-ROS1
TPM3-ROS1
LRIG3-ROS1
FIG-ROS1
KDELR2-ROS1
CCDC6-ROS1
MSN-ROS1
TMEM106B-ROS1
TPD52L1-ROS1
CLTC-ROS1
LIMA1-ROS1
RET Rearrangement
KIF5B-RET
Cabozatinib
Vandetanib
CCDC6-RET
NCOA4-RET
EPHA5-RET
PICALM-RET
BRAF Missense mutation
V600E
Vemurafenib
Dabrafenib
G469L
Y472C
KRAS Missense mutation
G12A
Trametinib
G12D
G12V
G12S
G12R
G12C
G13D
G13C
G13R
G13S
G13A
Q61K
Q61L
Q61R
Q61H
NRAS Missense mutation
G12C
Trametinib
G12R
G12S
G12A
G12D
Q61K
Q61L
Q61R
Q61H
PIK3CA Missense mutation H1047R Erlotinib
Duong Hong Quan
128
H1047L Gefitinib
DDR2 Missense mutation S768R Dasatinib
MET Exon 14 skipping mutation
c.2888-18_2888-7del12
Crizotinib
Capmatinib
Glesatinib
c.3024_3028+7del12
c.3001_3021del21
c.3028G>T
c.2888delA
c.3028G>A
c.3028G>C
c.3028+1G>T
c.2888-29_2888-6del24
ERBB2 Exon 20 insertion mutation
G776delinsVC
Afatinib
Neratinib
V777_G778insCG
G778_S779insG
S779_P780insVGS
P780_Y781insGSP
G776Lfs*98
CONCLUSION AND FUTURE
PERSPECTIVES
Personalized medicine for effective
treatment of NSCLC patients with EGFR
mutations, ALK rearrangements and/or
mutations, ROS1 rearrangements, RET
rearrangements, BRAF mutations, KRAS
mutations, NRAS mutations, PIK3CA
mutations, DDR2 mutations, MET mutations
and ERBB2 mutations has become the
international standard of care for NSCLC
patients (Fig. 1, Table 1). However,
standardization and validation of detection
methods for oncogenic drivers in NSCLC
patients is very essential for accurate and
reproducible results. Next-generation
sequencing (NGS), a powerful detection
method, will offer the vision of personalized
medicine where an individual’s treatment can
be based on that patient’s individual
molecular profile, rather than on historical
population-based medicine. NGS will be also
the powerful method to identify new
biomarkers for early diagnosis of lung cancer
and is increasingly used to guide
personalized treatments decisions for
NSCLC patients.
Figure 1. Personalized medicine with targeted therapeutic drugs for effective treatment of
NSCLC patients harboring targetable profile
Personalized medicine for effective treatment
129
REFERENCES
Aviel-Ronen S., Blackhall F. H., Shepherd F.
A., Tsao M. S., 2006. K-ras mutations in
non-small-cell lung carcinoma: a review.
Clin. Lung. Cancer., 8(1): 30−38.
Bergethon K., Shaw A. T., Ou S. H.,
Katayama R., Lovely C. M., McDonald N.
T., Massion P. P., Siwak-Tapp C.,
Gonzalez A., Fang R., Mark E. J., Batten
J. M., Chen H., Wilner K. D., Kwak E. L.,
Clark J. W., Carbone D. P., Ji H.,
Engelman J. A., Mino-Kenudson M., Pao
W., Lafrate A. J., 2012. ROS1
rearrangements define a unique molecular
class of lung cancers. J. Clin Oncol.,
30(8): 863−870.
Bray F., Ferlay J., Soerjomataram I., Siegel R.
L., Torre L. A., Jemal A., 2018. Global
caner statistics 2018: GLOBOCAN
estimates of incidence and mortality
worldwide for 36 cancers in 185 countries.
CA. Cancer. J. Clin., 68(6): 394−424.
Camidge D. R., Kono S. A., Flacco A., Tan
A.C., Doebele R.C., Zhou Q., Crino L.,
Franklin W.A., Varella-Garcia M., 2010.
Optimizing the detection of lung cancer
patients harboring anaplastic lymphoma
kinase (ALK) gene rearrangements
potentially suitable for ALK inhibitor
treatment. Clin. Cancer. Res., 16(22):
5581−5590.
Cardarella S., Ogino A., Nishino M., Butaney
M., Shen J., Lydon C., Yeap B. Y., Sholl
L. M., Johnson B.E., Jänne P. A., 2013.
Clinical, pathologic and biologic features
associated with BRAF mutations in non-
small cell lung cancer. Clin. Cancer. Res.,
19(16): 4532−4540.
Chong C. R and Jänne P. A., 2013. The quest
to overcome resistance to EGFR-targeted
therapies in cancer. Nat. Med., 19(11):
1389−1400.
Du X., Shao Y., Qin H. F., Tai Y. H., Gao H.
J., 2018. ALK-rearrangment in non-small-
cell lung cancer (NSCLC). Thorar.
Cancer., 9(4): 423−430.
Gainor J. F and Shaw A. T., 2013. Novel
targets in non-small cell lung cancer:
ROS1 and RET fusions. Oncologist.,
18(7): 865−975.
Gainor J. F., Varghese A. M., Ou S. H.,
Kabraji S., Awad M. M., Katayama R.,
Pawlak A., Mino-Kenudson M., Yeap B.
Y., Riely G. J., Iafrate A. J., Arcila M. E.,
Ladanyi M, Engelman J. A., Dias-
Santagata D and Shaw A. T., 2013. ALK
rearrangements are mutually exclusive
with mutations in EGFR or KRAS: an
analysis of 1,683 patients with non-small
cell lung cancer. Clin. Cancer. Res.,
19(15): 4273−4281.
Gautschi O., Milia J., Filleron T., Wolf J.,
Carbone D. P., Owen D., Camidge R.,
Narayanan V., Doebele R. C., Besse B.,
Remon-Masip J., Janne P. A., Awad M.
M., Peled N., Byoung C. C., Karp D. D.,
Van Den Heuvel M., Wakelee H.A., Neal
J. W., Mok T. S. K., Yang J. C. H., Ou S.
I., Pall G., Froesch P., Zalcman G.,
Gandara D. G., Riess J. W., Velcheti V.,
Zeidler K., Diebold J., Früh M., Michels
S., Monnet I., Popat S., Rosell R.,
Karachaliou N., Rothschild S. I, Shih J.
Y., 2017. Targeting RET in patients with
RET-rearranged lung cancers: Results
from the global, multicenter RET registry.
J. Clin. Oncol., 35(13): 1403−1410.
Gridelli C., Rossi A., Carbone D. P., Guarize
J., Karachaliou N., Mok T., Petrella F,
Spaggiari L., Rosell R., 2015. Non-small-
cell lung cancer. Nat. Rev. Dis.
Primers.,1: 15009.
Guo Y., Cao R., Zhang X., Huang L., Sun L.,
Zhao J., Ma J., Han C., 2019. Recent
progress in rare oncogenic drivers and
targeted therapy for non-small cell lung
cancer. Onco. Targets. Ther., 12:
10343−10360.
Horn L and Pao W., 2009. EML4-ALK:
honing in on a new target in non-small-
cell lung cancer. J. Clin. Oncol., 27(26):
4232−4235.
Inamura K., Takeuchi K., Togashi Y.,
Nomura K., Ninomiya H., Okui M., Satoh
Duong Hong Quan
130
Y., Okumura S., Nakagama K., Soda M.,
Choi Y. L., Niki T., Mano H., Ishikawa
Y., 2008. EML4-ALK fusion is linked to
histological characteristics in a subset of
lung cancers. J. Thorac. Oncol., 3(1):
13−17.
Katayama, 2017. Therapeutic strategies and
mechanisms of drug resistance in
anaplastic lymphoma kinase (ALK)-
rearranged lung cancer. Pharmacol. Ther.,
177: 1−8.
Kohno T., Ichikawa H., Totoki Y., Yasuda K.,
Hiramoto M., Nammo T., Sakamoto H.,
Tsuta K., Furuta K., Shimada Y., Iwakawa
R., Ogiwara H., Oike T., Enari M.,
Schetter A. J., Okayama H., Haugen A.,
Skaug V., Chiku S., Yamanaka I., Arai Y.,
Watanabe S., Sekine I., Ogawa S., Harris
C. C., Tsuda H., Yoshida T., Yokota J.,
Shibata T., 2012. KIF5B-RET fusions in
lung adenocarcinoma. Nat. Med., 18(3):
375−377.
Labrador J. P., Azcoitia V., Tuckermann J.,
Lin C., Olaso E., Manes S., Brückner K.,
Goergen J. L., Lemke G., Yancopoulos
G., Angel P., Martinez C., Klein R., 2001.
The collagen receptor DDR2 regulates
proliferation and its elimination leads to
dwarfism. EMBO. Rep., 2(5): 446−452.
Li B. T., Ross D. S., Aisner D. L., Chaft J. E.,
Hsu M., Kako S. L., Kris M. G., Varella-
Garcia M., Arcila M. E., 2016. HER2
amplication and HER2 mutation are
distinct molecular targets in lung cancers.
J. Thorac. Oncol., 11(3): 414−419.
Li D., Ambrogio L., Shimamura T., Kubo S.,
Takahashi M., Chirieac L. R., Padera R.
F., Shapiro G. I., Baum A., Himmelsbach
F., Rettig W. J., Meyerson M., Solca F.,
Breulich H., Wong K. K., 2008.
BIBW2992, an irreversibla EGFR/HER2
inhibitor highly effective in preclinical
lung cancer models. Oncogene., 27(34):
4702−4711.
Li T., Kung H. J., Mack P. C., Gandara D. R.,
2013. Genotyping and genomic profiling
of non-small-cell lung cancer:
Implications for current and future
therapies. J. Clin. Oncol., 31(8):
1039−1049.
Lin J. J. and Shaw A. T., 2017. Recent
advances in targeting ROS1 in lung
cancer. J. Thorac Oncol., 12(11):
1611−1625.
Lin J. J., Kennedy E., Sequist L. V.,
Brastianos P. K., Goodwin K. E., Stevens
S., Wanat A. C., Stober L. L., Digumarthy
S. R., Engelman J. A., Shaw A. T., Gainor
J. F., 2016. Clinical activity of Alectinib
in advanced RET-rearranged non-small
cell lung cancer. J. Thorac. Oncol.,
11(11): 2027−2032.
Lin J. J., Riely G. J., Shaw A. T., 2017.
Targeting ALK: precision medicine takes
on drug resistance. Cancer. Discov., 7(2):
137−155.
Marchetti A., Felicioni L., Malatesta S.,
Grazia Sciarrotta M., Guetti L., Chella A.,
Viola P., Pullara C., Mucilli F., Buttitta F.,
2011. Clinical features and outcome of
patients with non-small-cell lung cancer
harboring BRAF mutations. J. Clin.
Oncol., 29(26): 3574−3579.
Mazières J., Zalcman G., Crinò L., Biondani
P., Barlesi F., Filleron T., Dingemans A.
M., Léna H., Monnet I., Rothschild S. I.,
Cappuzzo F., Besse B., Thiberville L.,
Rouvière D., Dziadziuszko R., Smit E. F.,
Wolf J., Spirig C., Pecuchet N., Leenders
F., Heuckman J. M., Diebold J., Milia J.
D., Thomas R. K., Gautschi O., 2015.
Crizotinib therapy for advanced lung
adenocarcinoma and a ROS1
rearrangement: results from the EUROS1
cohort. J. Clin. Oncol., 33(9): 992−999.
Mok T. S., Wu Y. L., Ahn M. J., Garassino
M. C., Kim H. R., Ramalingam S. S.,
Shepherd F. A., He Y., Akamatsu H.,
Theelen W. S., Lee C. K., Sebastian M.,
Templeton A., Mann H., Marotti M.,
Ghiorghiu S., Papadimitrakopoulou V. A.,
AURA3 investigators, 2017. Osimertinib
or platinum-pemetrexed in EGFR T790M
positive lung cancer. N. Engl. J. Med.,
376(7): 629−640.
Personalized medicine for effective treatment
131
O’Leary C. G., Andelkovic V., Ladwa R.,
Pavlakis N., Zhou C., Hirsch F., Richard
D., ÓByrne K., 2019. Targeting BRAF
mutations in no-small cell lung cancer.
Transl. Lung. Cancer. Res., 8(6):
1119−1124.
Ohashi K., Sequist L. V., Arcila M. E., Lovly
C. M., Chen X., Rudin C. M., Moran T.,
Camidge D. R, Vnencak-Jones C.L.,
Berry L., Pan Y., Sakaki H., Engelman J.
A., Garon E. B., Dubinett S. M., Franklin
W. A., Riely G. J., Sos M. L., Kris M. G.,
Dias-Santagata D., Ladanyi M., Bunn P. A
Jr., Pao W., 2013. Characteristics of lung
cancers harboring NRAS mutations. Clin.
Cancer. Res.. 19(9): 2584−2591.
Pfister D. G., Johson D. H., Azzoli C. G.,
Sause W., Smith T. J., Baker S., Olak J.,
Stover D., Strawn J. R., Turrisi A. T.,
Somerfield M. R., 2004. American
Society of Clinical Oncology treatment of
unresectable non-small-cell lung cancer
guideline: Updated 2003. J. Clin. Oncol.,
22: 330−353.
Reungwetwattana T and Dy G. K., 2013.
Targeted therapies in development for
non-small cell lung cancer. J. Carcinog.,
12: 22.
Rikova K., Guo A., Zeng Q., Possemato A.,
Yu J., Haack H., Nardone J., Lee K.,
Reeves C., Li Y., Hu Y., Tan Z., Stokes
M., Sullivan L., Mitchell J., Wetzel R.,
Macneill J., Ren J. M., Yuan J.,
Bakalarski C.E., Villen J., Kornhauser J.
M., Smith B., Li D., Zhou X., Gygi S. P.,
Gu T. L., Polakiewicz R. D., Rush J.,
Comb M. J., 2007. Global survey of
phosphatyrosine signaling identifies
oncogenic kinases in lung cancer. Cell.,
131(6): 1190−1203.
Rosas G., Ruiz R., Araujo J. M., Pinto J. A.,
Mas L., 2019. ALK rearrangements:
Biology, detection and opportunities of
therapy in non-small cell lung cancer.
Crit. Rev. Oncol. Hematol., 136: 48−55.
Sarfaty M., Moore A., Neiman V., Dudnik E.,
IIouze M., Gottfriend M., Katznelson R.,
Nechushtan H., Sorotsky H. G., Paz K.,
Katz A., Saute M., Wolner M., Moskovitz
M., Miller V., Elvin J., Lipson D., Ali S.,
Gutman L. S., Dvir A., Gordon N., Peled
N., 2017. RET fusion lung carcinoma:
Response to therapy and clinical features
in a case series of 14 patients. Clin. Lung.
Cancer., 18(4): e223−e232.
Sharma S. V., Bell D. W., Settleman J., Haber
D. A., 2007. Epidermal growth factor
receptor mutations in lung cancer. Nat.
Rev. Cancer., 7(3): 169−181.
Shaw A. T., Gandhi L., Gadgeel S., Riely G.
J., Cetnar J., West H., Camidge D. R.,
Socinski M. A., Chiappori A., Mekhail T.,
Chao B. H., Borghaei H., Gold K. A.,
Zeater A., Bordogna W., Balas B., Puig
O., Henschel V., Ou S. I., Study
investigators, 2016. Alectinib in ALK-
positive, crizotinib-resistant, non-small-
cell lung cancer: a single-group,
multicentre, phase 2 trial. Lancet. Oncol.,
17(2): 234−242.
Shaw A. T, Kim D. W, Mehra R, Tan D. S.,
Felip E., Chow L. Q., Camidge D. R.,
Vansteenkiste J., Sharma S., De Pas T.,
Riely G. J., Solomon B. J., Wolf J.,
Thomas M., Schuler M., Liu U., Santoro
A, Lau Y. Y., Goldwasser M., Boral A. L.,
Engelman J. A., 2014. Ceritinib in ALK-
rearranged non-small-cell lung cancer. N.
Engl. J. Med., 370(13): 1189−1197.
Shaw A. T., Kim D. W., Nakagawa K., Seto
T., Crino L., Ahn M.J., De Pá T., Bese B.,
Solomon B.J., Blackhall F., Wu Y. L.,
Thomas M., ÓByrne K.J., Moro-Sibulot
D., Camidge D. R., Mok T., Hirsh V.,
Riely G. J., Lyer S., Tassell V., Polli A.,
Wilner K. D., Jänne P. A., 2013.
Crizotinib versus chemotherapy in
advanced ALK-positive lung cancer. N.
Engl. J. Med., 368(25): 2385−2394.
Shaw A. T., Ou S. H., Bang Y. J., Camidge D.
R., Solomon B. J., Salgia R., Riely G. J.,
Varella-Garcia M., Shapiro G. I., Costa D.
B., Doebele R. C., Le L. P., Zheng Z., Tan
W., Stephenson P., Shreeve S. M., Tye L.
Duong Hong Quan
132
M., Christensen J. G., Wilner K. D., Clark
J. W., Lafrate A. J., 2014. Crizotinib in
ROS1-rearranged non-small-cell lung
cancer. N. Engl. J. Med., 371(21):
1963−1971.
Shaw A. T., Yeap B. Y., Mino-Kenudson M.,
Digumarthy S. R., Costa D. B., Heist R.
S., Solomon B., Stubbs H., Admane S.,
MeDermott U., Settleman J., Kobayashi
S., Mark E. J., Rodig S. J., Chirieac L. R.,
Kwak E. L., Lynch T. J., Lafrate A. J.,
2009. Clinical features and outcome of
patients with non-small-cell lung cancer
who harbor EML4-ALK. J. Clin. Oncol.,
27(26): 4247−4253.
Shi Y., Au J. S., Thongprasert S., Srinivasan
S., Tsai C. M., Khoa M. T., Heeroma K.,
Itoh Y., Cornelio G., Yang P. C., 2014. A
prospective, molecular epidemiology
study of EGFR mutations in Asian
patients with advanced non-small-cell
lung cancer of adenocarcinoma histology
(PIONEER). J. Thorar. Oncol., 9(2):
154−162.
Soda M., Choi Y. L., Enomoto M., Takada S.,
Yamashita Y., Ishikawa S., Fujiwara S.,
Watanabe H., Kurashina K., Hatanaka H.,
Bando M., Ohno S., Ishikawa Y.,
Aburatani H., Niki T., Sohara Y.,
Sugiyama Y., Mano H., 2007.
Identification of the transforming
EMLA4-ALK fusion gen in non-small-
cell lung cancer. Nature., 448(7153):
561−566.
Solomon B. J., Mok T., Kim D. W., Wu Y. L.,
Nakagawa K., Mekhail T., Felip E.,
Cappuzzo F., Paolini J., Usari T., Lyer S.,
Reisman A., Wilner K. D., Tursi J.,
Blackhall F., PROFILE 1014
Investigators, 2014. First-line crizotinib
versus chemotherapy in ALK-positive
lung cancer. N. Engl. J. Med., 371(23):
2167−2177.
Suh J. H., Johnson A., Albacker L., Wang K.,
Chmielecki J., Frampton G., Gay L., Elvin
J. A., Vergilio J. A., Ali S., Miller V. A.,
Stephens P. J., Ross J. S., 2016.
Comprehensive genomic profiling
facilitates implementation of the national
comprehensive cancer network guidelines
for lung cancer biomarker testing and
identifies patients who may benefit from
enrollment in mechanism-driven clinical
trials. Oncologist., 21(6): 684−691.
Sun Y., Ren Y., Fang Z., Li C., Fang R., Gao
B., Han X., Tian W., Pao W., Chen H., Ji
H., 2010. Lung adenocarcinoma from East
Asian never-smokers is a disease largely
defined by targetable oncogenic mutant
kinases. J. Clin. Oncol., 28(30):
4616−4620.
Takahashi M., Ritz J and Cooper G. M., 1985.
Activation of a novel human transforming
gene, ret, by DNA rearrangement. Cell.,
42(2): 581−588.
Takeuchi K., Soda M., Togashi Y., Suzuki R.,
Sakata S., Hatano S., Asaka R., Hamanaka
W., Ninomiya H., Uehara H., Lim Choi
Y., Satoh Y., Okumura S., Nakagama K.,
Mano H., Ishikawa Y., 2012. RET, ROS1
and ALK fusions in lung cancer. Nat.
Med., 18(3): 378−381.
Toyokawa G and Seto T., 2015. Updated
evidence on the mechanisms of resistance
to ALK inhibitor and strategies to
overcome such resistance: Clinical and
preclinical data. Oncol. Res. Treat., 38(6):
291−298.
Travis W. D., Brambilla E., Riely G. J., 2013.
New pathologic classification of lung
cancer: relevance for clinical practice and
clinical trials. J. Clin. Oncol., 31(8):
992−1001.
Vogel W., Gish G. D., Alves F., Pawson T.,
1997. The discoidin domain receptor
tyrosine kinases are activated by collagen.
Mol. Cell., 1(1): 13−23.
Vuong H. G., Ho A. T. N., Altibi A. M. A.,
Nakazawa T., Katoh R., Kondo T., 2018.
Clinicalpathological implications of MET
exon 14 mutations in non-small cell lung
Personalized medicine for effective treatment
133
cancer - A systematic review and meta-
analysis. Lung Cancer., 123: 76−82.
Walsh L. A., Nawshad A., Medici D., 2011.
Discoidin domain receptor 2 is a critical
regulator of epithemial-mesenchymal
transition. Matrix. Biol., 30(4): 243−247.
Yarden Y and Sliwkowski M. X., 2001.
Untangling the erbB signaling network.
Nat. Rev. Mol. Cell. Biol., 2(2): 127−137.
Yoh K., Seto T., Satouchi M., Nishio M.,
Yamamoto N., Murakami H., Nogami N.,
Matsumoto S., Kohno T., Tsuta K.,
Tschihara K., Ishii G., Nomura S., Sato
A., Ohtsu A., Ohe Y., Goto K., 2017.
Vandetanib in patients with previously
treated RET-rearranged advanced non-
small-cell lung cancer (LURET): an open-
label, multicentre phase 2 trial. Lancet.
Respir. Med., 5(1): 42−50.
Các file đính kèm theo tài liệu này:
personalized_medicine_for_effective_treatment_of_nonsmall_ce.pdf