MỤC LỤC
Lời giới thiệu
Phần I: SỨC BỀN VẬT LIỆU
Bài tập lớn số 1: Đặc trưng hình học của hình phẳng
Bảng số liệuVí dụ tham khảo
Bài tập lớn số 2: Tính dầm thép
Bảng số liệuVí dụ tham khảo
Bài tập lớn số 3: Tính cột chịu lực phức tạp
Bảng số liệuVí dụ tham khảo
Bài tập lớn số 4: Tính dầm trên nền đàn hồi
Bảng số liệuVí dụ tham khảo
Phần II: CƠ HỌC KẾT CẤU
Bài tập lớn số 1: Tính hệ thanh phẳng tĩnh định
Bảng số liệuVí dụ tham khảo
Bài tập lớn số 2: Tính khung siêu tĩnh theo phương pháp lực
Bảng số liệuVí dụ tham khảo
Bài tập lớn số 3: Tính khung siêu tĩnh theo phương pháp chuyển vị Và phương pháp phân phối mô men
Bảng số liệuVí dụ tham khảo
Phụ lục
Mục lục
113 trang |
Chia sẻ: banmai | Lượt xem: 4445 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Sức bền vật liệu - Cơ học kết cấu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
cm)
∆1 30,03 45,05 K1 - 4,54 - 9,31
∆2 24 ∞ K2 - 5,67 0
∆3 ∞ - 28,95 K3 0 14,49
48
Từ hình 3.6 ta thấy: điểm đặt lực dọc lệch tâm K nằm ngoài lõi nên biểu đồ
ứng suất pháp trên hình 3.7 có hai dấu. Muốn biểu đồ ứng suất pháp chỉ có dấu
(-) thì lực dọc lệch tâm tại mặt cắt đáy cột phải đặt vào lõi.
X
Y
K5
K4
K3
K2
K1
C
Hình 3.9
49
BÀI TẬP LỚN SỐ 4
TÍNH DẦM TRÊN NỀN ĐÀN HỒI
BẢNG SỐ LIỆU BÀI TẬP LỚN SỐ 3
STT a(m) b(m) c(m) J(m4) M(KNm) P(KN) q(KN/m) K(KN/m2)
1 3 4 3 0,03516 70 150 58 60000
2 4 2 4 0,01800 40 120 36 40000
3 2 5 3 0,04267 80 170 60 40000
4 5 2 3 0,02289 60 120 44 60000
5 2 4 4 0,01800 50 80 40 50000
6 3 3 4 0,02858 30 90 48 50000
7 4 4 2 0,04267 90 160 62 60000
8 3 5 2 0,05118 90 170 70 50000
9 3 1 6 0,03652 70 140 56 40000
10 3 6 1 0,02843 50 100 45 60000
11 6 1 3 0,04016 80 160 54 40000
Ghi chú: Sinh viên chọn những số liệu trong bảng số liệu phù hợp với hình vẽ
của mình.
YÊU CẦU VÀ THỨ TỰ THỰC HIỆN
Yêu cầu:
Vẽ biểu đồ nội lực (biểu đồ M và biểu đồ Q) của dầm đặt trên nền Winkler. Sơ
đồ tính cho trên hình vẽ, môđun đàn hồi của dầm là E = 107 KN/m2. Yêu cầu lập
bảng kết quả tính toán nội lực cho các mặt cắt liên tiếp cách nhau 1 m.
Các bước giải:
1. Tính sẵn các trị số cần sử dụng:
Độ cứng: EJ, hệ số của dầm trên nền đàn hồi: m, m2, m3, m4
2. Lập bảng thông số ban đầu:
Lập bảng với 6 thông số cho các đoạn dầm.
3. Viết phương trình mô men uốn và lực cắt của dầm:
$ Viết phương trình nội lực của dầm.
$ Lập bảng các hệ số Crưlốp tại các mặt cắt cần tính toán.
$ Lập phương trình nội lực của toàn dầm dưới dạng số.
50
$ Lập điều kiện biên và giải hệ phương trình để tìm ra các ẩn số y0 và θ0.
$ Lập bảng kết quả tính toán nội lực (mô men và lực cắt) tại các mặt cắt cần
tính toán.
4. Vẽ biểu đồ nội lực:
Dựa vào bảng kết quả tính toán ở trên, vẽ các biểu đồ nội lực.
51
SƠ ĐỒ TÍNH DẦM TRÊN NỀN ĐÀN HỒI
P
2
q
M
2P
a b c
# # # # # #
1 P
q M
2P
a b ca b c
# # # # # #
q M P 2P
3
a b c
# # # # # #
q
P 2P
4
M
a b c
# # # # # #
2P
a b c
# # # # # #
P
5
q
M
6 P 2P
q M
a b c
# # # # # #
P 2P
7
q M
a b c
# # # # # #
P 2P q
M
a b c
# # # # # #
8
2P
9
q M
P
a b c
# # # # # #
P
2P10
M
q
a b c
# # # # # #
52
q
P 13 M
a b c
# # # # # #
P2P
q M
a b c
# # # # # #
11
P
2P
q
M
a b c
# # # # # #
12
M
P2P
14
q
a b c
# # # # # #
2P
15
q
M
P
a b c
# # # # # #
M
2P
16
P q
a b c
# # # # # #
53
VÍ DỤ THAM KHẢO
Đề bài:
Tính giá trị nội lực trên các mặt cắt (cách nhau 1 m) và vẽ biểu đồ nội lực cho
dầm đặt trên nền Winkler như sơ đồ cho trên hình 4.1, cho biết:
q = 80 KN/m b = 1 m
M = 800 KNm J = 0,0426 m4
P = 650 KN E = 107 KN/m2
Hệ số nền K0 = 6.104 KN/m3
Bài làm
1. Tính sẵn các trị số cần sử dụng:
EJ = 0,0426.107 = 426.103 KNm2
Tính các hệ số của dầm trên nền đàn hồi
m4 =
EJ.4
bK0 =
3
4
10.426.4
1.10.6 = 0,0352
m = 4 0352,0 = 0,433182
m2 = 0,18764
m3 = 0,081285
Bảng thông số ban đầu:
80 KN/m
650 KN
800 KNm
650 KN
100KNm
A
Z
4m
# # # # # #
4m3m
Y
H×nh 4.1
54
Các
thông số
Đoạn 1
Taị A (Z = 0)
Đoạn 2
Tại B (Z =3m)
Đoạn 3
Tại C (Z =7 m)
Δy
Δϕ
ΔM
ΔP
Δq
Δq/
≠ 0
≠ 0
0
- 650
0
0
0
0
0
- 650
-80
0
0
0
- 100
0
0
0
2. Viết phương trình nội lực cho từng đoạn:
a. Viết phương trình mô men uốn và lực cắt của dầm dài hữu hạn dưới dạng
chữ:
M1 = mZ3
0
mZ2
0
mZ D.m
.K
C.
m
y.K
B.
m
P ϕ++
M2 = )3Z(m2)3Z(m1 C.m
qB.
m
PM −− ++
M3 = )7Z(m2 A.MM −+
Q1 = mZ2
0
mZ
0
mZ C.m
.K
B.
m
y.K
A.P
ϕ++
Q2 = )3Z(m)3Z(m1 B.m
qA.PQ −− ++
Q3 = )7Z(m3 D.M.m4Q −−
b. Tính sẵn các hệ số của các số hạng trong các phương trình trên:
-
m
P = -
43318,0
650 = - 1500,531
m
K0 =
43318,0
10.6 4 = 13,851.104
-
m
q = -
43318,0
80 = - 184.6807 2
0
m
K = 2
4
43318,0
10.6 = 31,9753.104
- 2m
q = - 243318,0
80 = - 426.3372 3
0
m
K = 3
4
43318,0
10.6 = 73,8152.104
4.m.M = 4. 0,43318.(- 100) = -173,272
55
c. Thay các giá trị tính sẵn vào phương trình nội lực của dầm:
M1 = - 1500,531. Bmz + 31,9753.104.y0. Cmz + 73,8152.104. ϕ 0.Dmz
M2 = - 1500,531. Bmz + 31,9753.104.y0. Cmz + 73,8152.104. ϕ 0.Dmz –
- 1500,531.Bm.(Z-3) – 426,3372.Cm(Z-3)
M3 = - 1500,531. Bmz + 31,9753.104.y0. Cmz + 73,8152.104. ϕ 0.Dmz –
- 1500,531.Bm.(Z-3) – 426,3372.Cm.(Z-3) – 100.Am.(Z-7)
Q1 = - 650.Amz + 13,851.104.y0.Bmz +31,9753.104. ϕ 0.Cmz
Q2 = - 650.Amz + 13,851.104.y0.Bmz +31,9753.104.ϕ 0.Cmz - 650.Am(Z-3)
- 184,6807. Bm(Z-3)
Q3 = - 650.Amz + 13,851.104.y0.Bmz +31,9753.104.ϕ 0.Cmz - 650.Am(Z-3)
- 184,6807. Bm.(Z-3) – (-173,272).Dm.(Z-7)
3. Viết điều kiện biên:
Tại D (Z = 11m) ta có:
M3 = - 800 KNm và Q3 = 0
4. Tính sẵn các hàm Crưlốp:
(Lập bảng tính sẵn các hàm Crưlốp cho các mặt cắt cần tính toán, cách
nhau 1 m, với hệ số m = 0,43318)
Z mZ AmZ BmZ CmZ DmZ
0
1
2
3
0
0,43318
0,86636
1,29954
1
0,9941
0,9062
0,5278
0
0,43267
0, 8501
1,1764
0
0,0937
0,3729
0,8177
0
0,0135
0,1080
0,3608
4
5
6
7
1,73272
2,16590
2,59909
3,03227
- 0,4702
- 2,4770
- 5,7919
- 10,3342
1,2182
0,6230
- 1,1183
- 4,5760
1,3518
1,7820
1,7265
0,5644
0,8299
1,5179
2,3049
2,8551
8
9
10
11
3,46545
3,89863
4,33182
4,76501
- 15,1787
- 17,9374
- 14,1328
3,0853
- 10,1222
- 17,4354
- 24,7268
- 27,7519
- 2,5426
- 8,4670
- 17,6567
- 29,2901
2,5134
0,2436
- 5,2994
- 15,4184
(a)
(a)
56
Thay điều kiện biên tại D vào phương trình nội lực (a) ở đoạn 3, ta có:
M3 = -1500,531.Bm.11 + 31,9753.104.y0.Cm.11 + 73,8152.104. ϕ 0.Dm.11
- 1500,531.Bm.(11-3) – 426,3372.Cm(11-3) – 100.Amm(11-7) = - 800
Q3 = - 650.Am.11 + 13,851.104.y0.Bm.11 + 31,9753.104. ϕ 0.Cm.11
– 650.Am.(11-3) - 184,6807.Bm.(11-3) + 173,272.Dm(11-7) = 0
Thay giá trị của các hàm số Crưlốp lấy từ bảng trên vào phương trình (b), ta
có:
M3 = - 1500,531.(- 27,7519) + 31,9753.104.y0.(- 29,2901) +
+ 73,8152.104.ϕ 0.(- 15,4184) – 1500,531.(- 10,1222) +
– 426,3372.(- 2,5426) - 100.(-0,4702) = - 800
Q3 = - 650.(3,0853) + 13,851.y0.104.(-27,7519) +
+ 31,9753.104.ϕ 0.(-29,2901) - 650.(-15,1787)
– 184,6807.(-10,1222) + 173,272.0,8229 = 0
936,5597.104.y0 + 1138,1123.104.ϕ 0 = 58762.286
384,392.104.y0 + 936,5597.104.ϕ 0 = 9872.6705
5. Giải hệ phương trình:
Từ phương trình thứ nhất của hệ phương trình (d) ở trên, ta có:
y0 = 4
4
10.5597,936
10.1123,1138286,58762 −
Thay vào phương trình thứ hai của hệ (d), ta có:
384,392.104. 4
4
10.5597,936
10.1123,1138286,58762 − + 936,5597.104.ϕ 0 = 9872,6705
24117.7926 – 467,1152.104 + 936,5597.104.ϕ 0 = 9872,6705
→ 469,4445. 104.ϕ 0 = -14245.1221
ϕ 0 = - 30.3446.10-4Rad
y0 = 4
4.4
10.5597,936
)10.3446,30(10.1123,1138286,58762 −−− =
410.5597,936
34535.5625286,58762 +
(b)
(c)
(d)
57
→ y0 = 410.5597,936
93297.8485 Æ y0 = 99.618 10-4 m
Thay giá trị y0 và ϕ 0 vào, ta có phương trình nội lưc trong 3 đoạn của dầm đã
cho như sau:
M1 = - 1500,531. BmZ + 31,9753.104.99,618.10-4 CmZ +
+ 73,8152.104.(-30,3446.10-4).DmZ
Q1 = - 650.AmZ + 13,851.104.99,618.10-4.BmZ +
+ 31,9753.104.(-30,3446.10-4).CmZ
M2 = - 1500,531. BmZ + 31,9753.104.99,618.10-4 CmZ +
+ 73,8152.104.(-30,3446.10-4).DmZ – 1500,531.Bm.(Z-3) – 426,3372.Cm.(Z-3)
Q2 = - 650.AmZ + 13,851.104.99,618.10-4.BmZ +
31,9753.104.(-30,3446.10-4).CmZ - 650.Am.(Z-3) – 184,6807. Bm.Z-3)
M3 = - 1500,531. BmZ + 31,9753.104.99,618.10-4 CmZ +
+ 73,8152.104.(-30,3446.10-4).DmZ + 1500,531.Bm.(Z-3)
– 426,3372.Cm.(Z-3) – 100.Am.(Z-7)
Q3 = - 650.AmZ + 13,851.104.99,618.10-4.BmZ +
+ 31,9753.104(- 30,3446.10-4)CmZ -
- 650.Am.(Z-3) – 184,6807. Bm.Z-3) + 173,272.Dm.(Z-7)
Ta có phương trình nội lực của toàn dầm như sau:
M1 = - 1500,531. BmZ + 3185.315 CmZ - 2239.893.DmZ
Q1 = - 650.AmZ + 1379,804.BmZ - 970.278.CmZ
M2 = - 1500,531. BmZ + 3185.315 CmZ - 2239.893.DmZ
– 1500,531.Bm(Z-3) – 426,3372.Cm(Z-3)
Q2 = - 650.AmZ + 1379,804.BmZ - 970.278.CmZ
- 650.Am(Z-3) – 184,6807 Bm(Z-3)
M3 = - 1500,531.BmZ + 3185.315 CmZ - 2239.893.DmZ
– 1500,531.Bm(Z-3) - 426,3372.Cm(Z-3) – 100.Am(Z-7)
Q3 = - 650.AmZ + 1379,804.BmZ - 970.278.CmZ
- 650.Am(Z-3) – 184,6807 Bm(Z-3) + 173,272 .Dm(Z-7)
58
BẢNG KẾT QUẢ TÍNH LỰC CẮT TẠI CÁC MẶT CẮT YÊU CẦU
Đoạn Z mZ - 650.AmZ 1379,804.BmZ - 970,278.CmZ m( Z-3) - 650Am(Z-3) -184,6807Bm(Z-3) m.(Z-7) 173,272Dm(Z-7) Q (KN)
0 0 - 650 0 0 - - - - - - 650
1 0,43318 - 646,165 597,000 - 90,915 - - - - - -140.08
2 0,86636 - 589,030 1172,971 - 361,817 - - - - - 222.124
I
3 1,29954 - 343,070 1623,201 - 793,396 - - - - - 486.735
3 1,29954 - 343,070 1623,201 - 793,396 0 - 650 0 - - -163.265
4 1,73272 305,630 1680,877 - 1311,622 0,43318 - 646,165 - 79,906 - - -51.186
5 2,1659 1610,05 859,618 - 1729,035 0,86436 - 589,03 - 156,997 - - -5.394
6 2.59909 3764,735 - 1543,035 - 1675,185 1,29954 - 343,07 - 217,258 - - -13.813
II
7 3,03227 6717,230 - 6313,983 - 547,625 1,73272 305,63 - 224,978 - - -63.726
7 3,03227 6717,230 - 6313,983 - 547,625 1,73272 305,63 - 224,978 0 0 -63.726
8 3,46545 9866,155 - 13966,652 2467,029 2,1659 1610,05 - 115,056 0,43318 2,339 -136.135
9 3,89863 11659,31 - 24057,435 8215,344 2,59909 3764,735 206,528 0,86636 18,713 -192.805
10 4,33182 9186,320 - 34118,138 17131,908 3,03227 6717,23 845,099 1,29954 62.517 -175.064
III
11 4,76501 - 2005,444 - 38292,183 28419,540 3,46545 9866,155 1869,375 1,73272 142.586 0.029
59
BẢNG KẾT QUẢ TÍNH MÔ MEN TRÊN CÁC MẶT CẮT YÊU CẦU
Đoạn Z m Z -1500,531BmZ 3185,315CmZ - 2239,893DmZ m.(Z-3) - 1500,531Bm(Z-3) - 426,3372Cm(Z-3) m.(Z-7) - 100Am(Z-7) M(KNm)
0 0 0 0 0 - - - - - 0
1 0,43318 - 649,235 298.464 - 30.239 - - - - - - 381.01
2 0,86636 - 1275,601 1187.804 - 241.908 - - - - - - 329.705
I
3 1,29954 - 1765,225 2604.632 - 808.153 - - - - - 31.254
3 1,29954 - 1765,225 2604.632 - 808.153 0 0 0 - - 31,254
4 1,73272 - 1827,947 4305.909 - 1858,950 0,43318 - 649,235 - 39,948 - - - 70.171
5 2,16659 - 934,831 5676.231 - 3399.934 0,86636 - 1275,601 - 158,981 - - - 93.116
6 2,59909 1678,044 5499.446 - 5162.729 1,29954 - 1765,225 - 348,616 - - - 99.08
II
7 3,03227 6866,430 1797.792 - 6395.118 1,73272 - 1827,947 - 576.323 - - - 135.166
7 3,03227 6866,430 1797.792 - 6395.118 1,73272 - 1827,947 - 576.323 0 -100 - 235.166
8 3,46545 15188,675 -8098.982 - 5629.747 2,16659 - 934,831 - 759.733 0,43218 - 99,41 - 334.028
9 3,89863 26162,358 - 26970.062 - 545.638 2,59909 1678,044 - 736.071 0,86636 - 90,62 - 501.989
10 4,33182 37103,33 - 56242.151 11870.089 3,03227 6866,430 - 240.625 1,29954 - 52,78 - 695.707
III
11 4,76501 41642,586 - 93298.195 34535.566 3,46545 15188,675 1084.005 1,73272 47,02 - 800.343
60
Biểu đồ nội lực:
Biểu đồ nội lực (để tham khảo):
KET QUA TINH TOAN BANG MAY TINH:
M NMC Y0 Teta0
0.43318 23 0.00996 -0.00303
Z Y Teta M Q
0.0 0.0099615 -0.0030343 0.0000000 -650.0000000
1.0 0.0071266 -0.0027936 -380.8450000 -140.1870775
2.0 0.0051018 -0.0040241 -329.7900000 222.0708631
3.0 0.0037909 -0.0093300 31.1228000 486.7868019
3.0 0.0037909 -0.0093300 31.1228000 -163.2131981
4.0 0.0026245 -0.0198178 -70.1888000 -51.1123330
5.0 0.0016077 -0.0348689 -93.2355000 -5.1574182
6.0 0.0008065 -0.0516563 -98.7306000 -13.8467519
7.0 0.0002431 -0.0624000 -134.6650000 -63.6694719
7.0 0.0002431 -0.0624000 -234.6650000 -63.6694719
8.0 0.0001258 -0.0519507 -333.8200000 -135.8515721
9.0 0.0008060 0.0026625 -501.4780000 -192.7289675
3 m 4 m 4 m
80 KN/m
650 KN
800 KNm
650 KN
100KNm
A B C D
Z
M
Q
486,735
163,265 63,726
235,166
135,166
800,343
--
+
31,25
H×nh 4.2
(KN)
(KNm)
61
10.0 0.0026692 0.1309270 -694.8760000 -175.5120164
11.0 0.0061471 0.3602250 -800.0000000 0.0000000
Biểu đồ M:
Biểu đồ Q:
Hình 4.4
3 m 4 m 4 m
80 KN/m
650 KN 650 KN
100KNm
A B C D
Y
Z
H×nh 4. 3
800KNm
62
PHẦN II
ĐỀ VÀ HƯỚNG DẪN GIẢI
BÀI TẬP LỚN CƠ HỌC KẾT CẤU
BÀI TẬP LỚN SỐ 1
TÍNH HỆ THANH PHẲNG TĨNH ĐỊNH
BẢNG SỐ LIỆU BÀI TẬP LỚN SỐ 1
Kích thước hình học (m) Tải trọng T
hứ tự
L1 L2 L3
q(K
N/m)
P
(KN)
M
(KNm)
1 8 12 10 30 80 150
2 10 8 12 40 100 120
3 12 10 8 50 120 100
4 8 10 12 20 100 150
5 10 12 8 40 80 150
6 12 8 10 30 120 120
7 8 8 10 50 100 150
8 10 10 8 20 80 100
9 12 12 10 40 120 150
1
0
10 12 12 30 100 120
Ghi chú: Sinh viên chọn những số liệu trong bảng số liệu phù hợp với hình
vẽ của mình.
YÊU CẦU VÀ THỨ TỰ THỰC HIỆN
I. Xác định nội lực trong hệ ghép tĩnh định:
1.1. Xác định phản lực tại các gối tựa.
1.2. Vẽ các biểu đồ nội lực: mô men uốn M, lực cắt Q và lực dọc N.
1.3. Vẽ các đường ảnh hưởng: đahRA, đahMB, đahQB và đahQI khi lực thẳng
đứng P = 1 di động trên hệ khi chưa có hệ thống mắt truyền lực. Dùng đah để
kiểm tra lại các trị số RA, MB, QB, QI đã tính được bằng giải tích.
1.4. Vẽ lại các đường ảnh hưởng: đahRA, đahMB, đahQB và đahQI khi lực
thẳng đứng P = 1 di động trên hệ khi có hệ thống mắt truyền lực.
1.5. Tìm vị trí bất lợi nhất của đoàn tải trọng gồm 4 lực tập trung di động trên
hệ khi có mắt truyền lực để mô men uốn tại tiết diện K có giá trị tuyệt đối lớn
nhất.
II. Xác định một trong các chuyển vị sau của hệ tĩnh định:
Chuyển vị đứng tại F, Chuyển vị ngang tại H, Chuyển vị góc xoay tại tiết diện
R do tác dụng đồng thời của hai nguyên nhân tải trọng và chuyển vị cưỡng bức
của gối tựa (xem hình vẽ).
Biết: J1 = 2J; J2 = 3J; E = 2. 108 (KN/m
2
);
J = 10
-6
. L1
4 (m
4
); Δ = 0,01. L1 (m); ϕ = Δ/L2.
SƠ ĐỒ TÍNH HỆ TĨNH ĐỊNH
b b b b cc c c caa a aa a a
P P 2P
4m 2 4m a = L1/4 ; b = L2 /4 ; c = L3 /4. 1,5P
q
M
q 3m
JJ A K I
P
B
J2
J1 J1
J
4
L 1
2
L1
qq
M 3m
P
I BK A
J2
J1
J
J1
J
F
0,5L2
0,5L2 Δ
1
4m
L2
q
J1
ϕ HP
2
4m 4m
q
J
P
I K B
A
q
ΔJ2 J1
J1
F
M 3m
L2
J1
P
2
L1
3
4m 4m
4
L1
M
q
J1
q
Δ
b b b b cc c c c
J1
JR J
K
I B
A
J2 J2
3m
L2
J1
P P
5
4m
0,5L2
3m
B
P
I K AJ J
d
4
R
J1
J2 J2
J1
P
Δ
q
M
4m 4m
2
L14
L1
2
L1
4
L1
2
L1
VÍ DỤ THAM KHẢO
Đề bài:
Số đề: 4. 5. 3
4 ) Số thứ tự của sơ đồ kết cấu
5 ) Số liệu về kích thước hình học (hàng thứ 5): L1 = 10m; L2 = 12m; L3 =
8m
3 ) Số liệu về tải trọng (hàng thứ 3): q = 50KN/m; P =120 KN; M =100 KNm.
Với các số liệu đã cho, sơ đồ tính của kết cấu được vẽ lại như sau (Hình 1):
P=120K
Trình tự tính toán:
1. Xác định nội lực trong hệ tĩnh định
1.1 Xác định các phản lực gối tựa:
) Đặt tên các gối tựa và các nút của khung (Hình 1.1).
) Phân tích hệ chính phụ: Lập sơ đồ tầng (Hình 1.2)
) Lần lượt tính toán từ hệ phụ đến hệ chính theo thứ tự sau:
1.Tính dầm MN: YM = 150 KN Æ Truyền phản lực xuống khung GEM
YN = 150 KN Æ Truyền phản lực xuống dầm AB
2.Tính dầm AB:
Σ MA = - YB.8 + P.6 - YN.3 = - YB.8 + 120.6 - 150.3 = 0Æ YB = 33,75 KN
L
T
S
BA
J
N
2J 2J
3J
2J
J
P=120KN
I K NM
RG
Δ
C D E
q=50KN/m
M=100KNm
q
3m
q 6m
3J
6m
Hình 1.1
4m 2,5 4m 5m 3m 6m 3m 4m 2 2 2
Σ MB = YA. 8 - P.2 - YN.11 = YA. 8 - 120. 2 - 150.11 = 0 Æ YA = 236,25 KN
Kiểm tra lại kết quả tính YA và YB bằng phương trình ΣY = 0 Æ Cho ta kết
quả đúng.
3. Tính khung GEM:
Σ MG = - XE.6 + q.3. 6,5 + YM.8 = - XE. 8 + 50.3.6,5 + 150.8 = 0
Æ XE = 362,5 KN
ΣX = 0 Æ XG = 362,5 KN
ΣY = 0 Æ YG = 300 KN
Truyền phản lực XG và YG sang khung chính CD (lưu ý đổi chiều của phản lực)
4. Tính khung CD:
Σ MC = - YD. 8 - P. 2,5 + q.5. 2 + M + YG. 8 + XG. 6 = 0
Æ YD = 609,375 KN
ΣX = 0 Æ XC = 362,5 KN
ΣY = 0 Æ YC = 60,625 KN
1.2. Dùng phương pháp mặt cắt xác định nội lực trong hệ:
S
T
L
G
YC = 60,63 YD = 609,38
362,5
300
P=120KN
C D
q=50KN/m
M=100KNm
XC = 362,5
YB= 33,75YA = 236,25
XE = 362,5
YG = 300
XG = XE
G
P=120KN
I K
BA
YM = 150
NM
q=50KN/m
YN = 150
R
E
150q=50KN/m
Hình 1.2
1.2.1. Vẽ biểu đồ mô men M (Hình 1.3).
1.2.2. Vẽ biểu đồ lực cắt Q: Dựa vào các liên hệ vi phân giữa mô men M và
lực cắt Q, dùng công thức:
L
M
Q Q 0ABAB
Δ±= biểu đồ lực cắt Q (Hình 1.4)
được suy từ biểu đồ mô men M.
3. Vẽ biểu đồ lực dọc N: Biểu đồ lực dọc N (Hình 1.5) được suy từ biểu đồ
lực cắt Q bằng cách tách các nút và xét cân bằng về lực.
150
(KN)
Q
120
170 465
30
362,5
362,5
300
362,5
86,25
33,75
Hình 1.4
125
675
2175
1500
225
450
180
67,5
2175
2075
4400
4350
300
4050
(KNm)
M
Hình 1.3
4. Kiểm tra cân bằng các nút: S; T; L; G; R của khung CD khung GEM.
♦ Về mô men: Nút G không cần kiểm tra vì có các mô men nội lực, ngoại lực
bằng 0.
Σ MS = 4350 - 300 - 4050 = 0
Σ MT = 4400 - 4400 = 0
Σ ML = 2075 + 100 - 2175 = 0
Σ MR = 1500 + 675 - 2175 = 0
♦Về lực: Từ kích thước hình học của khung ta có: Sinα = 0, 6; Cosα = 0, 8
• Kiểm tra nút S: (Hình 1.6a)
ΣX = 325,625. 0,8 - 362,5 + 170. 0,6 = 0
ΣY = 60,625 - 120 - 170. 0,8 + 325,625. 0,6 = 0
• Kiểm tra nút T: (Hình 1.6b)
ΣX = 30. 0,6 - 475,625. 0,8 + 104,375. 0,8 + 465. 0,6 = 0
362,5
475,625
(KN)
N
60,625
325,625
104,375
309,375
609,375
Hình 1.5
4050
4350
300
S 4400
T
4400
2075
2175
L
100
1500
2175
R
675
325,625
α
60,625
120 S
Y
170
362,5
X
475,625
104,375
465
30
T
Y
α
b)
X
362,5
309,375
465
104,375
αL
Y
a) c)
X
Hình 1.6
ΣY = 465. 0,8 - 30. 0,8 - 104,375. 0,6 - 475,625. 0,6 = 0
• Kiểm tra nút L (Hình 1.6c):
ΣX = 362,5 - 104,375. 0,8 - 465. 0,6 = 0
ΣY = 309,375 + 104,375. 0,6 - 465. 0,8 = 0
• Kiểm tra nút G (Hình 1.7b):
ΣX = 362,5 - 362,5 = 0
ΣY = - 309,375 - 300 + 609,375 = 0
♦ Kiểm tra tổng hợp một phần của khung (Hình 1.7a):
a) b)
Hình 1.7
ΣX = 362,5 - 362,5= 0
ΣY = 60,625 + 309,375 - 120 - 50. 5 = 0
ΣMS= 4350 - 120. 2,5 + 50. 5. 2 + 100 - 2175 - 309,375. 8 = 0
1.3. Vẽ các đường ảnh hưởng (đah) RA, MB, QB, QI: Khi lực thẳng đứng P =1
di động trên hệ khi chưa có mắt truyền lực (Hình 1.8) ta nhận thấy các tiết diện
cần vẽ đah đều thuộc hệ phụ của CD nên khi P = 1 di động trên khung chính CD
thì đah sẽ trùng với đường chuẩn do đó ta chỉ quan tâm và vẽ đah thuộc hệ MN
và AB.
1. Vẽ các đahRA, đahMB, đahQBT, đahQBF và đahQI khi lực thẳng đứng P= 1
di động trên hệ khi chưa có mắt truyền lực (Hình 1.8b,c,d,e,f):
L
T
309,375KN
2175KNm4350KNm
60,625KN
P=120KN
S
362,5KN
q=50KN/m
M=100KNm X 362,5
300
362,5
609,375
309,375
G
Y
G
NM B I A K
P=120KN q=50KN/mP=1
a)
2. Dùng đah để kiểm tra lại các trị số RA, MB, QB và QI đã tính bằng giải tích:
RA = ; KN 236,25 0,25 120 2
6 375,1
50 =⋅+⋅⋅ MB = 0
QB
T
= ; KN 33,75 - 0,75 120 -
2
6 0,375
50 =⋅⋅⋅ QBF = 0
QI
T
= ; KN 86,25 0,25 120 -
2
6 0,375
50 =⋅⋅⋅
QI
F
= ; KN 33,75 - 0,75 120 -
2
6 0,375
50 =⋅⋅⋅
So sánh với kết quả tính theo giải tích cho ta thấy kết quả tính theo hai cách
là bằng nhau.
3. Vẽ lại các đahRA, đahMB, đahQBT, đahQBF, đahQI và đahMk khi lực thẳng
đứng P = 1 di động trên hệ khi có mắt truyền lực (Hình 1.9):
P=1
G
NM
B
I
A
K
5,5m 5,5m 6m 5m 4m 4m
4. Tìm vị trí bất lợi nhất của hệ 4 lực tập trung P1; P2; P3; P4 di động trên hệ
khi có mắt truyền lực để MK có giá trị tuyệt đối lớn nhất.
Ta nhận thấy đahMK (Hình 1.10a) gồm 4 đoạn thẳng → tính các trị số tgαi
ứng với các đoạn thẳng lần lượt từ trái qua phải:
tgα1 = - 0,25; tgα2 = 0,5; tgα3 = 0; tgα4 = - 0,5.
Lần lượt cho đoàn tải trọng di động từ trái qua phải sao cho các lực tập
trung lần lượt đặt vào các đỉnh I, II, III của đahMK (theo 5 sơ đồ trong hình
1.10b.c.d.e.f).
Tìm vị trí có đạo hàm ⎥⎦
⎤⎢⎣
⎡
Z
K
d
dM
đổi dấu để xác định lực Pth.
dz
♣ Thử lần 1: Cho P4 đặt vào đỉnh I của đahMK (sơ đồ 1)
+ Khi P4 đặt ở bên trái đỉnh I ta có:
=⎥⎦
⎤⎢⎣
⎡ T
Z
K
d
dM (P3 + P4). tgα1 = - (180 + 240). 0,25 = - 105 < 0
+ Khi P4 đặt ở bên phải đỉnh I ta có:
I
III II
1 1
đah MK (m) 1
4
1,5
P2 P1 P3 P4
P2P1 P3 P4
P2P1 P3 P4
P2P1 P3 P4
P2P1 P3 P4
1
2
3
4
5
Hình 1.10
P3
G
NM BI A K
P=1
P2 P1 P4
P1 = P2 = 120KN ; P3 = 180KN ; P4 = 240KN2m 4m 4m
5m 3m 6m 3m 4m 2m 2m 2m
a)
b)
c)
d)
e)
f)
=⎥⎦
⎤⎢⎣
⎡
d
dM
F
Z
K P3. tgα1 + P4. tgα2 = - 180. 0,25 + 240. 0,5 = 75 > 0
Ta nhận thấy đạo hàm đổi dấu nên P4 đặt ở đỉnh I là Pth . Tính MK ứng với sơ
đồ 1:
MK = - 180. 0,5 - 240. 1,5 = - 450 KNm
♣ Thử lần 2: Cho P3 đặt vào đỉnh I của đahMK (sơ đồ 2)
+ Khi P3 đặt ở bên trái đỉnh I ta có:
=⎥⎦
⎤⎢⎣
⎡ T
Z
K
d
dM (P2 + P3). tgα1 + P4. tgα2 = (120 + 180).0,25 + 240. 0,5 = 45 >
0
+ Khi P3 đặt ở bên phải đỉnh I ta có:
=⎥⎦
⎤⎢⎣
⎡ F
Z
K
d
dM (P1 + P2). tgα1 + (P3 + P4). tgα2
= - (120 +120). 0,25 + (180 +240). 0,5 = 150 > 0
Ta nhận thấy đạo hàm không đổi dấu nên không cho giá trị MK cực trị. Tiếp
tục dịch chuyển đoàn tải trọng sang bên phải.
♣ Thử lần 3: Cho P4 đặt vào đỉnh II của đahMK (sơ đồ 3)
+ Khi P4 đặt ở bên trái đỉnh II ta có:
=⎥⎦
⎤⎢⎣
⎡ T
Z
K
d
dM (P1 + P2). tgα1 + (P3 + P4). tgα2
= - (120 +120). 0,25 + (180 + 240). 0,5 = 150 > 0
+ Khi P4 đặt ở bên phải đỉnh II ta có:
=⎥⎦
⎤⎢⎣
⎡ F
Z
K
d
dM (P1 + P2 ). tgα1 + P3. tgα2 + P4. tgα3
= - (120 + 120). 0,25 + 180. 0,5 + 240. 0 = 30 > 0
Ta nhận thấy đạo hàm không đổi dấu nên không cho giá trị MK cực trị. Tiếp
tục dịch chuyển đoàn tải trọng sang bên phải.
♣ Thử lần 4: Cho P3 đặt vào đỉnh II của đahMK (sơ đồ 4)
+ Khi P3 đặt ở bên trái đỉnh II ta có:
=⎥⎦
⎤⎢⎣
⎡ T
Z
K
d
dM P1. tgα1 + (P2 + P3). tgα2 + P4. tgα3
= - 120. 0,25 + (120 +180). 0,5 + 240. 0 = 120 > 0
+ Khi P3 đặt ở bên phải đỉnh II ta có:
=⎥⎦
⎤⎢⎣
⎡ F
Z
K
d
dM P1. tgα1 + P2. tgα2 + P3. tgα3 + P4. tgα4
= - 120. 0,25 + 120. 0,5 + 180. 0 - 240. 0,5 = - 90 < 0
Ta nhận thấy đạo hàm đổi dấu nên P3 đặt ở đỉnh II là Pth. Tính Mk ứng với
sơ đồ 4 ta có:
Mk = - 120. 1,25 - 120. 1 + 180. 1 + 240. 1 = 150 KNm
♣ Thử lần 5: Cho P3 đặt vào đỉnh III của đahMK (sơ đồ 5)
+ Khi P3 đặt ở bên trái đỉnh III ta có:
=⎥⎦
⎤⎢⎣
⎡ T
Z
K
d
dM (P1 + P2). tgα2 + P3.tgα3 + P4.tgα4
= (120 + 120). 0,5 + 180. 0 - 240. 0,5 = 0
+ Khi P3 đặt ở bên phải đỉnh III ta có:
=⎥⎦
⎤⎢⎣
⎡ F
Z
K
d
dM P1. tgα2 + P2. tgα3 + P3. tgα4
= 120. 0,5 + 120. 0 + 180. 0,5 = - 30 < 0
Ta nhận thấy đạo hàm đổi từ 0 sang dương nên P3 đặt ở đỉnh III là Pth. Tính
Mk ứng với sơ đồ 5 ta có:
Mk = 0 + 120. 1 + 180. 1 - 240. 1 = 60 KNm
Nếu dịch chuyển tiếp, đoàn tải trọng sẽ ra ngoài đahMk, quá trình thử có thể
dừng lại được.
So sánh hai trị số: Mk
min
= - 450 KNm
Mk
max
= 150 KNm
Ta có thể kết luận: Vị trí bất lợi nhất của hệ lực tập trung di động trên hệ khi
có mắt truyền lực để mô men uốn tại tiết diện K có giá trị tuyệt đối lớn nhất là vị
trí đặt tải theo sơ đồ 1. Ứng với sơ đồ này ta có:
max |MK| = 450 KNm.
2. Tính chuyển vị trong hệ tĩnh định
Theo yêu cầu của đề bài ta phải xác định chuyển vị góc xoay tại tiết diện R
do hai nguyên nhân là tải trọng và gối tựa C dịch chuyển sang phải một đoạn là
Δ.
Với: J1 = 2J; J2 = 3J; E = 2. 10
8 (KN/m
2
);
J = 10
-6
. L1
4 (m
4
) = 10
-6
. 10
4
= 10
-2
(m
4
)
Δ = 0,01. L1 (m) = 0,01. 10 = 0,1 (m).
2.1. Lập trạng thái phụ “k”:
1. Đặt một mô nen tập trung Mk = 1 vào tiết diện R cần xác định chuyển vị
góc xoay.
2. Tính hệ ở trạng thái "k": Ta có nhận xét Mk = 1 được đặt vào hệ khung
GEM nên nó chỉ ảnh hưởng đến nội lực của khung GEM và khung chính CD của
nó chứ không ảnh hưởng đến nội lực trong các hệ phụ MNAB của nó, vì vậy khi
tính hệ ở trạng thái “k” ta chỉ cần quan tâm đến nội lực ở phần khung CDGEM.
+ Xác định các phản lực: XE = XC = 6
1 ; YC = YD = 8
1 (chiều của phản lực
xem hình 10).
+ Vẽ biểu đồ ( k M ): (Hình 1.11).
2.2. Tính hệ ở trạng thái " p ":
Dùng kết quả đã tính ở phần trên, để đễ theo dõi trong quá trình nhân biểu
đồ ta vẽ lại phần biểu đồ ( ) trong khung CDGEM (Hình 1.11). PM
2.3. Dùng công thức Măcxoen-Mo tính chuyển vị cần tìm:
1. Tính chuyển vị góc xoay tại R do tải trọng gây ra: ϕR(P):
Vận dụng công thức nhân biểu đồ tính chuyển vị góc xoay tại nút R do tải
trọng gây ra với lưu ý trong hệ dầm khung có thể bỏ qua ảnh hưởng của lực cắt
và lực dọc.
a) b) 1,5
125
675
2175
1500
2175
2075
4400 4350
300
4050
" P "
R
2J 2J
3J
3J
MK=1
2
1
1
1
2
" K "
M
2J
K
ϕR(P) = ( ). (PM k M ) = ⎟⎠
⎞⎜⎝
⎛ ⋅⋅⋅ 2
3
2
2
12 4350
EJ3
1
⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+⎟⎠
⎞⎜⎝
⎛ ⋅+⋅++⋅⋅+
2
3,5
5 125
3
2
0,5
3
1
5,1
2
5 350
2
1,5 2
5 4050
EJ2
1
( )
rad. 023,0
10.10.10.2
875,45196
217514503875375,6484583,364167,72975,1771812400
EJ
1
1.
3
2
.
2
6.2175
.
EJ2
1
1.
3
2
.
2
6.2175
EJ3
1
5,0.
3
2
1
2
5.2325
2
5,2
.5.2075
EJ2
1
468
==
+++++++=
++⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ +++
−
2. Tính chuyển vị góc xoay tại R do gối tựa C dịch chuyển sang phải: ϕR(Δ)
ϕR(Δ) = im
n
1
i
k .R Δ− ∑ = ⎟⎠
⎞⎜⎝
⎛ Δ−−
6
1
= 0,017 (rad)
3. Tính chuyển vị góc xoay tại R do cả hai nguyên nhân đồng thời tác dụng:
ϕR = ϕR(P) + ϕR(Δ) = 0,023 + 0,017 = 0,04 (rad).
Kết quả mang dấu dương cho ta kết luận tiết diện R dưới tác dụng của hai
nguyên nhân trên sẽ bị xoay đi 1 góc 0,04 (rad) thuận chiều kim đồng hồ (cùng
chiều với MK = 1 đã giả thiết).
BÀI TẬP LỚN CƠ HỌC KẾT CẤU SỐ 2
TÍNH KHUNG SIÊU TĨNH THEO PHƯƠNG PHÁP LỰC
BẢNG SỐ LIỆU CHUNG VỀ KÍCH THƯỚC VÀ TẢI TRỌNG
Kích thước hình
học (m) Tải trọng Thứ
tự
L1 L2 q (KN/m) P (KN) M (KNm)
1 8 12 30 80 150
2 10 8 40 100 120
3 12 10 50 120 100
4 8 10 20 100 150
5 10 12 40 80 150
6 12 8 30 120 120
7 8 8 50 100 150
8 10 10 20 80 100
9 12 12 40 120 150
10 10 12 30 100 120
YÊU CẦU VÀ THỨ TỰ THỰC HIỆN
1. Tính hệ siêu tĩnh do tải trọng tác dụng:
1.1. Vẽ các biểu đồ nội lực: Mô men uốn Mp, lực cắt Qp, lực dọc Np trên hệ
siêu tĩnh đã cho. Biết F = 10J/L1
2 (m
2
).
1. Xác định bậc siêu tĩnh và chọn hệ cơ bản (HCB).
2. Thành lập hệ phương trình chính tắc dạng chữ.
3. Xác định các hệ số và số hạng tự do của hệ phương trình chính tắc,
kiểm tra các kết quả đã tính được.
4. Giải hệ phương trình chính tắc.
5. Vẽ biểu đồ mô men trên hệ siêu tĩnh đã cho do tải trọng tác dụng Mp.
Kiểm tra cân bằng các nút và kiểm tra theo điều kiện chuyển vị.
6. Vẽ biểu đồ lực cắt Qp và lực dọc Np trên hệ siêu tĩnh đã cho.
1.2. Xác định chuyển vị ngang của điểm I hoặc góc xoay của tiết diện K.
Biết: E = 2.10
8
(KN/m
2
); J = 10
-6
. L1
4
(m
4
).
2. Tính hệ siêu tĩnh chịu tác dụng đồng thời của ba nguyên nhân (tải
trọng, nhiệt độ thay đổi và gối tựa dời chỗ).
2.1. Viết hệ phương trình chính tắc dạng số.
2.2. Trình bày:
1. Cách vẽ biểu đồ mô men uốn M
cc
do 3 nguyên nhân đồng thời tác dụng
trên hệ siêu tĩnh đã cho và cách kiểm tra.
2. Cách tính các chuyển vị đã nêu ở mục trên.
Biết:
) Nhiệt độ thay đổi trong thanh xiên:
+ Ở thớ trên là Ttr = +36
o
+ Ở thớ dưới là Td = +28
o
.
) Thanh xiên có chiều cao tiết diện h = 0,1 m.
) Hệ số dãn nở dài vì nhiệt độ α = 10-5.
) Chuyển vị gối tựa:
+ Gối D dịch chuyển sang phải một đoạn Δ1 = 0,001. L1 (m).
+ Gối H bị lún xuống một đoạn Δ2 = 0,001. L2 (m).
SƠ ĐỒ TÍNH KHUNG SIÊU TĨNH
9
2
L1
2
L1 8m L1
2J
3J
H
D
2J
M J
J
q
2J
PI
P
L2
6m
F
J
2J
2J
1
I
H
M
Pq
D
L2
6m 3J
3J
8m L1
2
L1
2
L1 L18m
3
M
3J
H
J
2J
2J
J
q
D
2J
K P
L2
6m
HD
J
P
2J
5
2J
2J
M
M
K
q
3J
3J L2
6m
L18m
H D
J
I
F
7
P
M
3J 2J
J
q
3J L2
6m
8m L1
2
2J F
2J
D H
P
q
3J
2J I
M
6m
L2
L18m
q 4
M
3J
H
2J
2J
P
J
F q
D
I
J
P
6
L2
6m
L1 8m L1
8 2J
P
3J J
M
D
M
K
2J
J
F
q
H
L2
6m
L1 8m L1
D
J
10
2J
M 3J
K
2J P
J
q
3J
H
L2
6m
L1 8m
2
L1
2J
8m 8m
H
2J
M
I J
2J J P
J
D
6m
L2
VÍ DỤ THAM KHẢO
Đề bài:
Số Đề: 10.5.8
10 ) Số thứ tự của sơ đồ kết cấu
5 ) Số liệu về kích thước hình học (hàng thứ 5): L1 = 10 m; L2 = 12 m.
8 ) Số liệu về tải trọng (hàng thứ 8): q = 20 KN/m; P = 80 KN; M =100
KNm.
Với các số liệu đã cho, sơ đồ tính của kết cấu được vẽ lại như sau: (Hình 2.1).
Trình tự tính toán:
1. Tính hệ siêu tĩnh chịu tác dụng của tải trọng
1.1. Vẽ các biểu đồ nội lực: mô men uốn Mp, lực cắt Qp và lực dọc Np.
1. Xác định bậc siêu tĩnh: n = 3V - K = 3. 2 - 3 = 3.
2. Chọn hệ cơ bản (HCB): Là hệ tĩnh định (Hình 2.2a) được suy từ hệ siêu
tĩnh đã cho bằng cách loại bỏ bớt 3 liên kết thừa (2 liên kết tại A; 1 liên kết ngăn
cản chuyển vị ngang tại D), sau đó thêm vào D và A ba ẩn lực X1; X2; X3.
M=100 KNm
B
C
A
H
D
E
P = 80 KN
2J
2J
q = 20 KN /m
K
3J
J
6m
J
3J
12m
Hình 2.1 8m 10m
3. Lập hệ phương trình chính tắc dạng chữ:
δ11 X1 + δ12 X2 + δ13 X3 + Δ1p = 0
δ21 X1 + δ22 X2 + δ23 X3 + Δ2p = 0
δ31 X1 + δ32 X2 + δ33 X3 + Δ3p = 0
4. Xác định các hệ số δkm và các số hạng tự do Δkp của hệ phương trình:
♣ Vẽ các biểu đồ mô men đơn vị: , và do lần lượt các ẩn lực M2M1 M3
X1 = 1 (Hình 2.2b), X2 = 1 (Hình 2.2c) và X3 = 1 (Hình 2.2d) tác dụng trên HCB.
♣ Vẽ biểu đồ mô men do tải trọng tác dụng trên HCB (Hình 2.2e).
o
PM
200
HCB100
M
q
P
e)
P
M
2J
2J
q K
3J
C
H
E
J
D
B
J
A
3J
X1 X3
HCB
X2
a)
H
2,25
6
X1 = 1
HCB
18
12
2,25
1 18
b)
N1=-1,35
M1
Hình 2.2
0
10
X2 = 1
HCB
10
0
10
1
c)
M2
X3 =1
HCB
d)
N2=0
12 12
0
0
1
N3= 0
M3
♣ Dùng công thức Măcxoen- Mo và phép nhân biểu đồ để tính các hệ số và
các số hạng tự do của hệ phương trình chính tắc:
δ11 = = +⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅ 12
3
2
2
1012
EJ2
1
12
3
2
2
1212
EJ
1
EJ
1464
18
3
2
2
1818
EJ3
1 =⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+
δ12 = δ21 = = EJ
480
1012
2
618
EJ3
1 −=⎥⎦
⎤⎢⎣
⎡ ⋅⋅+−
δ22 = = ( ) EJ
67,566
EJ3
1700
10
3
2
2
1010
EJ2
1
101210
EJ3
1 ==⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+⋅⋅
δ23 = δ32 = = EJ
540
12
2
1010
EJ2
1
10
2
1212
EJ3
1 −=⎥⎦
⎤⎢⎣
⎡ ⋅⋅−⎥⎦
⎤⎢⎣
⎡ ⋅⋅−
δ33= =
( )
EJ
1488
121012
EJ2
1
12
3
2
2
1212
EJ
1
12
3
2
2
1212
EJ3
1 =⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅=
δ13 = δ31 = = EJ
240
12
3
1
6
2
1212
EJ3
1 =⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ ⋅+⋅
Δ1p = =
×M1 M1
× M1 M2
×M2 M2
× M2 M3
× M3 M3
×M1 M3
o
PM × M 1
EJ
20880
12
3
2
6
2
12960
EJ3
1
610200
3
2
12
3
2
2
10100
EJ2
1 =⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ ⋅+⋅⋅+⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅−⋅⋅⋅−=
Δ2p = = EJ
19200
10
2
12960
EJ3
1 −=⋅⋅⋅−
Δ3p = = EJ
7680
12
3
1
2
12960
EJ3
1 =⋅⋅⋅⋅
♣ Kiểm tra kết quả tính các hệ số δkm của hệ phương trình chính tắc:
Vẽ biểu đồ mô men đơn vị tổng cộng (Hình 2.3):
Kiểm tra các hệ số thuộc hàng thứ nhất của hệ phương trình:
Σδ1m = δ11 + δ12 + δ13 = = +⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅ 12
3
2
2
1212
EJ
1
+⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+ 12
3
2
2
1012
EJ2
1
EJ
1224
812
2
186
6
3
2
2
66
EJ3
1 =⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ ⋅⋅++⋅⋅⋅
Kiểm tra các hệ số thuộc hàng thứ hai của hệ phương trình:
Σδ2m= δ21 + δ22 + δ23 = =
EJ
33,453
10
3
1
2
2
1010
EJ2
1
81210
EJ3
1 −=⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ ⋅+⋅−⋅⋅⋅−
Kiểm tra các hệ số thuộc hàng thứ ba của hệ phương trình:
Σδ3m = δ31 + δ32 + δ33 = =
o
PM × M2
o
PM × M3
Ms M2 + M3M1 +=
X2=1
X3=1 X1 = 1
6
MS
HCB
8
12 12
2
Hình 2.3
M1 M s×
M2 Ms×
M3 Ms×
EJ
1188
12
3
2
2
1212
EJ
1
1210
2
122
EJ2
1
8
2
1212
EJ3
1 =⋅⋅⋅⋅+⋅⋅+⋅+⋅⋅⋅
Kiểm tra tất cả các hệ số của hệ phương trình chính tắc:
∑ ∑δ
= =
=3
1k
3
1m
Km EJ
7,1958
= =
⎟⎠
⎞⎜⎝
⎛ ⋅⋅+⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅ 81286
3
2
2
66
EJ3
1
12
3
2
2
1012
EJ2
1
12
3
2
2
1212
EJ
1
EJ
75,1958
12
3
2
2
1212
EJ
1
10
3
2
2
2
1010
2
122
102
EJ2
1 =⋅⋅⋅⋅+⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ ⋅+⋅++⋅⋅+
Kiểm tra các số hạng tự do của hệ phương trình chính tắc:
ΣΔkp = Δ1p + Δ2p + Δ3p = =
EJ
9360
8
2
12960
EJ3
1
610200
3
2
12
3
2
2
10100
EJ2
1 =⋅⋅⋅+⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅−⋅⋅⋅−
5.Giải hệ phương trình chính tắc:
1464X1 - 480X2 + 240X3 + 20880 = 0 X1 = - 2,225 KN
-480X1 + 566,67X2 - 540X3 - 19200 = 0 X2 = 41,914 KN
240X1 - 540X2 +1488X3 + 7680 = 0 X3 = 10,4 KN
6. Vẽ biểu đồ mô men trên hệ siêu tĩnh đã cho do tải trọng tác dụng:
Khi cộng các biểu đồ ta cần phải có sự thống nhất chung về dấu của các nội
lực giữa các biểu đồ. Để đỡ nhầm lẫn ta có thể tự qui ước M > 0 khi căng dưới
với các thanh ngang; căng phải với các thanh đứng và ngược lại. Ở đây chúng
tôi lập bảng tính các mô men tại các đầu thanh với qui ước: người quan sát
đứng ở trong khung HCBA; M > 0 căng về phía người quan sát; M < 0 căng về
phía ngược lại.
Đầu
thanh
Mp
o Mp(KNm)
MED 26,7 0 0 0 26,7
MEK 26,7 0 0 100 126,7
M1.X1 M2.X2 M3.X3
Ms M s×
o
PM × Ms
Mp M2 M3 X1+
o
PM X2 + X3 +M1 =
MCK 13,35 0 0 0 13,35
MCH 13,35 419,14
-
124,8
0 307,69
MHC 40,05 419,14 0
-
960
-500,81
MCB 0 419,14
-
124,8
0 294,34
MBC 0 0
-
124,8
0 - 124,8
MBA 0 0
-
124,8
0 - 124,8
∗ Kiểm tra cân bằng nút E về mô men:
ΣME = 100 + 26,7 - 126,7 = 0
∗ Kiểm tra cân bằng nút B về mô men:
ΣMB = 124,8 - 124,8 = 0
∗ Kiểm tra cân bằng nút C về mô men:
ΣMC = 307,69 - 13,35 - 294,34 = 0
∗ Kiểm tra theo điều kiện chuyển vị:
⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+⋅⋅⋅−⋅⋅⋅⋅− 610200
3
2
12
3
2
2
107,126
EJ2
1
12
3
2
2
127,26
EJ
1
⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅+⎥⎦
⎤⎢⎣
⎡ ⋅⋅+⋅⋅−⋅⋅⋅−+ 12
3
2
2
128,124
EJ
1
8
2
1281,500
8
2
1269,307
6
3
2
2
635,13
EJ3
1
( ) ) m (
1010102
04,1217
EJ
04,1217
08,392204,2705
EJ
1
10
3
1
2
2
1034,294
10
3
2
2
2
108,124
EJ2
1
468 ⋅⋅⋅−=−=−
=⎥⎦
⎤⎢⎣
⎡ ⎟⎠
⎞⎜⎝
⎛ ⋅+⋅−⎟⎠
⎞⎜⎝
⎛ ⋅+⋅+
−
= - 0,61 (mm).
Tính sai số theo biểu thức: ( )%
A
BA +=δ
ta có %545,0
04,2705
08,392204,2705 <=−=δ là sai số trong giới hạn cho phép
ta có thể coi chuyển vị đã tính là bằng 0, điều đó chứng tỏ biểu đồ Mp đã vẽ
đúng.
7. Vẽ biểu đồ lực cắt Qp và biểu đồ lực dọc Np:
♣ Biểu đồ lực cắt Qp (Hình 2.5) được suy ra từ biểu đồ Mp dựa vào mối liên
hệ vi phân giữa M và Q: Dùng công thức QAB = L
M
0ABQ
Δ± để lập bảng tính
lực cắt tại các đầu thanh với sinα = 0,6; cosα = 0,8.
Đầu
thanh
L
(m)
0
ABQ ± L
MΔ Qp
(KN)
QDE =
QED
1
2
0 (26,7 - 0)/12
2,2
25
QCK =
QKC
6 0 - (13,35 - 0)/6
-
2,225
QEK
1
0
(20.10.0,8)/
2
126,7/10
67,
33
QKE
1
0
-
(20.10.0,8)/2 126,7/10
-
92,67
QCH =
QHC
1
2
0
(500,81 +
307,69)/12
67,
375
QCH =
QHC
1
2
0
(500,81 +
307,69)/12
67,
375
QCB =
QBC
1
0
0
- (294,34 +
124,8)/10
-
41,914
QBA =
QAB
1
2
0 124,8/12
10.
4
♣ Biểu đồ lực dọc Np (Hình 2.6) được suy từ biểu đồ lực cắt Qp bằng cách
xét cân bằng hình chiếu các ngoại lực và nội lực tại các nút E, K, C và B với
sinα = 0,6; cosα = 0,8.
♣ Xét cân bằng nút E:
ΣX = NEK. 0,8 + 67,33. 0,6 - 2,25 = 0
NEK = - 47,685 KN
ΣU = NED. 0,8 + 67,33 - 2,25. 0,6 = 0
NED = - 82,475 KN
♣ Xét cân bằng nút K:
NBA
NBC
X
B
Y
10,4
80
41,914
2,25
Y
X C
NCH
41,914
69,6
117,525
67,375
E
NED
α
2,25
67,33
NEK K
X
U
NKC NKE
α
X
U
K
92,67 2,25
AH
E
C
QP
( KN )
2,25
B
D
67,33 92,67
10,4
41,914
67,375
2,25
Hình 2.5
ΣX = NKE. 0,8 - 92,67. 0,6 - 2,25 = 0
→ NKE = 72,315 KN
ΣU = NKC. 0,8 + 2,25. 0,6 + 92,67 = 0 → NKC = - 117,525 KN
♣ Xét cân bằng nút B:
ΣX = NBC - 80 + 10,4 = 0 → NBC = 69,6 KN
ΣY = NBA + 41,914 = 0 → NBA = - 41,914 KN
♣ Xét cân bằng nút C:
ΣX = 69,6 - 67,375 - 2,25 = 0
ΣY = NCH + 117,525 - 41,914 = 0 → NCH = - 75,611 KN
1.2. Tính chuyển vị góc xoay tại K:
Với E = 2. 10
8 KN/m
2
; J =10
-6
. L1
4
(m
4
) = 10
-6
. 10
4
= 10
-2
(m
4
)
1. Lập trạng thái phụ “k” trên hệ tĩnh định được suy ra từ hệ siêu tĩnh đã cho
bằng cách loại bỏ 3 liên kết thừa. Ở đây chúng tôi chọn giống HCB (Hình 2.2).
2. Vẽ biểu đồ mô men ở trạng thái phụ “k” (Hình 2.7).
3. Dùng công thức nhân biểu đồ tính ϕK:
ϕK(P) ⎟⎠
⎞⎜⎝
⎛ ⋅⋅⋅+⋅⋅= 1
2
12 500,81
-
2
12 307,69
1
2
6 35,13
EJ3
1
( )
EJ
372,89
- 1001,62 - 615,38 35,13
EJ
1 =+=
rad 00019,0
101010 2
372,89
468
−=⋅⋅⋅−= −
Vậy tiết diện K bị xoay một góc 0,00019 rad thuận chiều kim đồng hồ.
D
E
117,525
A
C
NP
( KN)
)
H
B
K 72,315
69,6
41,914
47,685
82,475 75,611
Hình 2.6
K MK =1
'' K ''
1
Hình 2.7
MK
o
2. Tính hệ siêu tĩnh chịu tác dụng đồng thời của ba nguyên nhân (tải
trọng, sự thay đổi nhiệt độ và gối tưa dời chỗ):
2.1. Viết hệ phương trình chính tắc dạng số:
1. Chọn hệ cơ bản giống như trên (Hình 2.8).
X2
M
D
C
B
A
+120
-80
E
Δ1
P
2J
2J
q
3J
H
J J
X1 X3
HCB
3J
K
Δ2
Hình 2.8
2. Lập hệ phương trình chính tắc dạng chữ:
δ11 X1 + δ12 X2 + δ13 X3 + Δ1p + Δ1t + Δ1Δ = Δ1
δ21 X1 + δ22 X2 + δ23 X3 + Δ2p+ Δ2t + Δ2Δ = 0
δ31 X1 + δ32 X2 + δ33 X3 + Δ3p + Δ3t +Δ3Δ = 0
3. Xác định các số hạng tự do Δkt và ΔkΔ:
im
i
kk R - Δ⋅=Δ ∑Δ
∑∑ Ω⋅Δ⋅α±+Ω⋅⋅α=Δ M
h
N t K
t
Kckt
Với Δ1 = 0,001.L1 = 0,001. 10 = 0,01 (m)
Δ2 = 0,001.L2 = 0,001. 12 = 0,012 (m)
tc = (36 + 28)/2 = 32
0
; ⎜Δt⎜= 80; α = 10-5; h = 0,1 (m)
Sử dụng các kết quả tính nội lực đơn vị của thanh xiên EK đã tính ở trên ta
có: 0N N ; KN 1,35 - N 321 ===
( )
0
0,044 10 4368
2
10 12
1,0
8 10
10 1,35 3210
t3t2
5-
5
5
t1
=Δ=Δ
=⋅=⎟⎠
⎞⎜⎝
⎛ ⋅⋅+⋅−⋅=Δ
−−
Phản lực đứng tại liên kết H được ghi trong các (Hình 2.3), (Hình 2.4) và
(Hình 2.5).
Δ1Δ = - 2,25. Δ2 = - 2,25. 0,012 = - 0,027
Δ2Δ = - 1. Δ2 = - 0,012
Δ3Δ = 0
4. Lập hệ phương trình chính tắc dạng số:
1464 X1 - 480 X2 + 240 X3 + 20880 + (0,044 - 0,027)EJ = 0,01EJ
-480 X1 + 566,67 X2 - 540 X3 - 19200 + 0 - 0,012EJ = 0
240 X1 - 540 X2 + 1488 X3 + 7680 + 0 + 0 = 0
1464 X1 - 480 X2 + 240 X3 + 34880 = 0
- 480 X1 + 566,67 X2 - 540 X3 - 43200 = 0 (**)
240 X1 - 540 X2 + 1488 X3 + 7680 = 0
2.2. Trình bày cách tính:
1. Mô men uốn Mcc trên hệ siêu tĩnh đã cho do tác dụng đồng thời của 3
nguyên nhân: tải trọng, sự thay đổi nhiệt độ trong thanh xiên EK và sự dời chỗ
của gối tựa D và H.
♦ Giải hệ phương trình (**) ta được các nghiệm X1, X2, X3
♦
♦ Kiểm tra theo điều kiện chuyển vị ta dùng biểu thức:
vế phải của hệ phương trình +Δ−Δ− ∑∑
= Δ=
3
1k
k
3
1k
kt
= - Δ1t - Δ1Δ - Δ2Δ + Δ1 = 0,005
→ Nếu kết quả nhân biểu đồ thỏa mãn biểu thức trên thì biểu đồ Mcc được
xem là đúng.
Mcc M2 M3 X1+
o
PM= M1 X2 + X3 +
Mcc = Ms ×
2. Cách tính chuyển vị góc xoay tại K:
♦ Lập trạng thái phụ "k" như trên (Hình 2.7)
♦ Tính hệ tĩnh định đã chọn ở trạng thái "k": Xác định phản lực tại D, H; vẽ
biểu đồ mô men và xác định lực dọc trong thanh xiên EK.
♦ ϕK(P; t0; Δ) = + Δkt
0
+ΔkΔ
0 Mcc
o
Mk×
Ở đây với trạng thái “k” đã chọn để tính góc xoay tại K ta có phản lực tại gối
tựa D; phản lực đứng tại H; và nội lực mô men, lực dọc trong thanh xiên EK
bằng 0 nên Δkt
0
= ΔkΔ
0
= 0.
BÀI TẬP LỚN CƠ HỌC KẾT CẤU SỐ 3
TÍNH KHUNG SIÊU TĨNH THEO PHƯƠNG PHÁP
CHUYỂN VỊ VÀ PHƯƠNG PHÁP PHÂN PHỐI MÔ MEN.
BẢNG SỐ LIỆU CHUNG VỀ KÍCH THƯỚC VÀ TẢI TRỌNG
Kích thước hình
học (m)
Tải trọng
Thứ
tự
L1 L2
q
(KN/m)
P
(KN)
M
(KNm)
1 8 12 30 80 150
2 10 8 40 100 120
3 12 10 50 120 100
4 8 10 20 100 150
5 10 12 40 80 150
6 12 8 30 120 120
7 8 8 50 100 150
8 10 10 20 80 100
9 12 12 40 120 150
10 10 12 30 100 120
YÊU CẦU VÀ THỨ TỰ THỰC HIỆN:
1. Vẽ biểu đồ mô men uốn Mp của khung siêu tĩnh đã cho theo phương pháp
chuyển vị.
2. Vẽ biểu đồ mô men uốn Mp của khung siêu tĩnh đã cho theo phương pháp
phân phối mô men.
3. Vẽ biểu đồ lực cắt Qp, lực dọc Np trên hệ siêu tĩnh đã cho.
4. Xác định chuyển vị ngang của điểm I hoặc góc xoay của tiết diện K.
Biết: E = 2.10
8
(KN/m
2
); J = 10
-6
. L1
4
(m
4
).
Chú ý:
1. Vẽ xong biểu đồ mô men uốn Mp cần kiểm tra cân bằng các nút và cân
bằng hình chiếu cho các biểu đồ lực cắt Qp, lực dọc Np.
2. Cần so sánh kết quả tính nội lực giữa hai phương pháp.
3. Cần hiểu rõ ý nghĩa của công thức tính chuyển vị và cách lập trạng thái
phụ ''k'' để tính chuyển vị.
SƠ ĐỒ TÍNH KHUNG SIÊU TĨNH
(Bài tập lớn số 3)
M P
4
L1
2J
J
q
J
P
M
I 6m
L2
8m
0,5L2
0,5L2
6
2
L1
2
L1
J
J
q
2J K
J
P
L2
0,5L2 7
0,5L2
1
L1
2J 2J K
J q L2
2
L1
2
L1
4
L1 8m
J
2J
K
2J P J
P
q
2
0,5L2 6m
0,5L2
L2
4
L1
P J
J
K
2J
q43
6m
L2
0,5L2
0,5L2
8m
2J
PI
J J
q
0,5L2 J
0,5L2
P
0,5L2
L1
2
L1 L1
P
2J K 2J
J
M
q P 5
0,5L2
0,5L2
2
L1
4
L1
J
2J
K
2J
q
J
P
8
0,5L2 6m
0,5L2
L2
8m10
J
M
2J 2J K
P q9
J
2J
q
2J
K
P
6m
L2
VÍ DỤ THAM KHẢO
Đề bài:
Số đề: 10. 7. 5
10 ) Số thứ tự của sơ đồ kết cấu
7 ) Số liệu về kích thước hình học (hàng thứ 7): L1 = 8 m; L2 = 8 m.
5 ) Số liệu về tải trọng (hàng thứ 5): q = 40KN/m; P = 80 KN.
Với các số liệu đã cho, sơ đồ tính của kết cấu được vẽ lại như sau (Hình
3.1):
P = 80 KN
Hình 3.2
Z1P
C
D
A
B
Z2
HCB
P
q
P
C
6m
4m
4m Hình 3.1
D
J
K
2J
2J
q = 40 KN /m
J
B
A
8m
2m 8m
Trình tự tính toán:
1. Dùng phương pháp chuyển vị vẽ biểu đồ mô men uốn MP do tải
trọng tác dụng trên hệ siêu tĩnh đã cho:
1.1. Xác định số ẩn số:
n = ng + nt = 1 + 1 = 2.
1.2. Lập hệ cơ bản (HCB):
Thêm vào nút B một liên kết mô men và một liên kết lực, tương ứng với
chúng là các ẩn chuyển vị Z1 và Z2 (Hình 3.2).
1.3. Lập hệ phương trình chính tắc:
r11 Z1 + r12 Z2 + R1p = 0
r21 Z1 + r22 Z2 + R2p = 0
1.4. Dùng bảng tra vẽ các biểu đồ đơn vị: , và do lần lượt các ẩn
Z1 = 1 (Hình 3.3), Z2 = 1 (Hình 3.4) và tải trọng (Hình 3.5) gây ra trên HCB.
o
PM
1.5. Tính các hệ số: r11; r12; r22 và các số hạng tự do R1p; R2p:
+ Tách nút B ở các biểu đồ, , và xét cân bằng về mô men để xác
định các phản lực mô men r11, r12 và R1p trong liên kết mô men được thêm vào B
trên HCB.
+ Xét cân bằng về lực của thanh BC ở biểu đồ và để xác định các
phản lực thẳng r22 và R2p trong liên kết lực được thêm vào B trên HCB.
M1 M2
o
PMM1 M2
o
PM2 M
0,5EJ
0,6EJB
r11
r11=1,1EJ
0,094EJ
B
r12
r12 = r21 = - 0,094EJ
400
R1p
160 B
R1p= - 240
0,006EJ
0,024EJ
C
B r22
r22=0,03EJ
P
B
C
R2p
25
R2p= 25
q
Z1 = 1 Z2 = 1
0,6EJ
M1
B
HCB
0,25EJ
0,5EJ
Hình 3.3
M2
B
0,094EJ
HCB
0,094EJ
0,047EJ Hình 3.4
*MP
( KNm )
400 160
400
160
100
120
Hình 3.5
1.6. Giải hệ phương trình chính tắc:
1,1EJ Z1 - 0,094EJ Z2 - 240 = 0 Z1 = 200,712/EJ
- 0,094EJ Z1 + 0,03EJ Z2 + 25 = 0 Z2 = - 204,436/EJ
1.7. Vẽ biểu đồ mô men trên hệ siêu tĩnh đã cho (Hình 3.6):
Khi cộng các biểu đồ ta cần phải có sự thống nhất chung về dấu của các nội
lực giữa các biểu đồ. Để đỡ nhầm lẫn ta có thể tự qui ước M > 0 khi căng dưới
với các thanh ngang; căng phải với các thanh đứng và ngược lại. Ở đây chúng
tôi lập bảng tính mô men tại các đầu thanh với qui ước: người quan sát đứng ở
trong khung khi đó M > 0 căng về phía người quan sát và M < 0 căng về phía
ngược lại.
Đầu
thanh
Mp Mp
MBK 0 0 - 160 - 160
MBA - 100,356 - 19,217 0
-
119,573
MBC 120,427 0 - 400
-
279,573
MAB 50,178 19,217 0 69,395
MDC 0 - 9,608 -120
-
129,608
Kiểm tra cân bằng nút B về mô men:
ΣMB = 279,573 - 119,573 - 160 = 0
129,608
279,573
119,573
160
B
D
C
K
A
B
160 279,573
400
95,196
160
(KNm)
MP
69,395
119,573
Hình 3.6
M1. Z1 M2. Z2
Mp M2 Z1+ M1 = Z2 + oPM
2. Dùng phương pháp phân phối mô men (PPMM) vẽ biểu đồ mô men
uốn MP:
Hệ siêu tĩnh đã cho có một nút cứng B có chuyển vị thẳng, trình tự tính như
sau:
2.1. Xác định số ẩn số: n = nt = 1.
2.2. Lập hệ cơ bản (HCB) (Hình 3.7).
2.3. hệ phương trình chính tắc:
r11 Z1 + R1p = 0
2.4. biểu đồ đơn vị do Z1 = 1 gây
ra trên HCB (Hình 3.8). Khác với phương
pháp chuyển vị ở đây mô men tại nút B đã
cân bằng sau khi thực hiện sơ đồ PPMM
(Hình 3.8).
♣Xác định độ cứng đơn vị qui ước ρkj:
ρBA = iBA = 0,125EJ;
P
B
C
D
A
P
q
Z1
HCB
Hình 3.7
M1
M1
EJ15,0
10
EJ2
4
3
4
3
BCBC i =⋅==ρ
♣ Xác định các hệ số phân phối mô men μkj:
545,0
EJ15,0EJ125,0
EJ15,0
; 455,0
EJ15,0EJ125,0
EJ125,0
BCBA =+==+= μμ
♣ Kiểm tra các hệ số PPMM: Σ μBj = μBA + μBC = 0,455 + 0,545 = 1
♣ Lập sơ đồ PPMM để vẽ (Hình 3.8): Ở đây chúng tôi sử dụng kết quả biểu
đồ M1 M2
tra bảng do Z2 =1 ở trên, đó là (Hình 3.4) trong phần tính theo phương
pháp chuyển vị).
+
+
- 0,02
2EJ
- 0,043EJ
+0,094EJ
+0,094EJ
+0,051EJ
+0,072EJ
-0,051EJ
0,
45
5
0,54
B
A
C
D
0
+ 0,047EJ
C
A
D
Z1=1
M1
0,051EJ
0,072EJ
0,047EJ
Hình 3.8
B
o
PM
♣ Lập sơ đồ PPMM để vẽ (Hình 3.9)
Sử dụng kết quả biểu đồ tra bảng do tải trọng tác dụng ở trên, đó là Mp
o
(Hình 3.5) trong phần tính theo phương pháp chuyển vị.
+
0,
45
5
0,545 B
A
C
D
0
-160 400
-130,8
+269,2
-109,2
-54,6
-120
Hình 3.9
B
D
A
160 269,2
400
100
120
160
( KNm )
109,2
54,6 C
oMP
2.5. Xác định các hệ số của phương trình chính tắc:
0,006EJ
0,015EJ
C
r11 B
r11 = 0,021EJ
25
R1pB
20,475
P
C
R1p = 4,525
2.6. Giải phương trình chính tắc:
0,021EJ. Z1 + 4,525 = 0 Z1 = - 215,476/EJ
2.7. Vẽ biểu đồ mô men trên hệ siêu tĩnh: (Hình 3.10).
Mp = M1 . Z1+ Mpo
Lập bảng tính các mô men tại các đầu thanh với qui ước: người quan sát
đứng ở trong khung; M > 0 căng về phía người quan sát; M < 0 căng về phía
ngược lại. Sau đó so sánh kết quả tính Mp giữa phương pháp chuyển vị và
phương pháp phân phối mô men (sai số kết quả tính giữa 2 phương pháp được
ghi trong bảng).
Đầu
thanh
Mpo Mp
Sai số giữa hai
PP
MBK 0 - 160 - 160 0%
MBA
-
10,989
-
109,2
-
120,189
0,5%
MBC
-
10,989
-
269,2
-
280,189
0,22%
MAB 15,514 54,6 70,114 0,1%
MDC
-
10,127
-120
-
130,127
0,4%
M1. Z1
3. Vẽ biểu đồ lực cắt Qp và biểu đồ lực dọc Np:
3.1 Biểu đồ lực cắt Qp (Hình 3.11) được suy ra từ biểu đồ Mp. Ở đây chúng
tôi dùng kết quả tính MP theo phương pháp chuyển vị (Hình 3.6) để tính lực cắt
tại các đầu thanh dựa vào mối liên hệ vi phân giữa M và Q:
3.2. Dùng công thức:
QAB = L
M
Q0AB
Δ± QBA = L
M
Q0BA
Δ±
Kết quả tính lực cắt tại các đầu thanh được ghi trong bảng sau:
Đầu
thanh
L(m) 0ABQ ± L
MΔ Qp
QBK
= QKB
2 0 - (160 - 0)/2 - 80
QAB
= QBA
8 0
-
(69,395+119,573)/8
-
23,621
C
D
B
A
160 280,189
400
94,937
160
(KNm)
130,127
MP
70,114
120,189
Hình 3.10
QBC 10 (40.10.0,8)/2 279,573/10 187,957
QCB 10
-
(40.10.0,8)/2
279,573/10
-
132,043
QCE
= QEC
4 0 95,196/4 23,799
QED
= QDE
4 0
- (129,608 +
95,196)/4
-56,201
3.3. Biểu đồ lực dọc Np (Hình 3.12) được suy từ biểu đồ lực cắt Qp bằng
cách xét cân bằng hình chiếu các nội lực và ngoại lực tại các nút B và C với sinα
= 0,6; cosα = 0,8.
♣ Xét cân bằng nút B:
Σ X = NBC. 0,8 - 187,957. 0,6 + 23,62 = 0
NBC = 111,443 KN
Σ U = NBA. 0,8 + 187,957 + 80. 0,8 - 23,62. 0,6 = 0
→ NBA = - 297,183 KN
♣ Xét cân bằng nút C:
C
K B
A
E
D
QP
187,957
23,621
132,043
80
23,621
56,201
(KN)
Hình 3.11
A
D
B K
111,443
NP (KN)
297,231
128,557
182,769
C
Hình 3.12
X
NBC
NBA
α
NBK = 0 B
80 187,957
23,62
U
NCB
NCD
α
132,043
X
U
C
23,62
Σ X = NCB. 0,8 + 132,043. 0,6 + 23,62 = 0
NCB= - 128,557 KN
Σ U = NCD. 0,8 + 23,62. 0,6 + 132,043 = 0
NCD = - 182,769 KN
4. Tính chuyển vị góc xoay tại K:
Với E = 2. 10
8
KN/m
2
; B MK = 1
K
J =10
-6
. L1
4 (m
4
) = 4096. 10
-6
(m
4
)
4.1. Lập trạng thái phụ “k” trên hệ
tĩnh định được suy ra từ hệ siêu tĩnh
đã cho bằng cách loại bỏ liên kết
khớp tại C (Hình 3.13). C
A
4.2. Vẽ biểu đồ mô men ở trạng
thái phụ “k” (Hình 3.14).
4.3. Dùng công thức nhân biểu đồ tính ϕK:
D
'' k ''
Hình 3.13
1
MK0
Hình 3.14
129,608
D
C
K
A
B
279,573 160
400
95,196
160
(KNm)
MP
69,395
119,573
Hình 3.6
ϕK(P) = ⎥⎦
⎤⎢⎣
⎡ ⋅⋅⋅⋅+⎟⎠
⎞⎜⎝
⎛ ⋅⋅= 1
2
8 19,573
- 1
2
8 395,69
EJ
1
1
2
2 160
EJ2
1
ϕK(P) = - 0,00015 rad
Vậy tiết diện K sẽ bị xoay một góc 0,00015 rad thuận chiều kim đồng hồ.
×MP MK
Phụ lục: Mẫu Trang bìa
TRƯỜNG ĐẠI HỌC THỦY LỢI HÀ NỘI
BỘ MÔN SỨC BỀN - CƠ KẾT CẤU
BÀI TẬP LỚN .......
SỐ ....
TÍNH HỆ TĨNH ĐỊNH
Số đề : 4 . 5 . 3
Họ và tên sinh viên :
Lớp :
Người hướng dẫn :
Hà Nội -2006
MỤC LỤC
Trang
Lời giới thiệu 3
Các yêu cầu chung 4
Phần I:
SỨC BỀN VẬT LIỆU
Bài tập lớn số 1:
Đặc trưng hình học của hình phẳng
Bảng số liệu 7
Ví dụ tham khảo 11
Bài tập lớn số 2:
Tính dầm thép
Bảng số liệu 18
Ví dụ tham khảo 23
Bài tập lớn số 3:
Tính cột chịu lực phức tạp
Bảng số liệu 37
Ví dụ tham khảo 41
Bài tập lớn số 4:
Tính dầm trên nền đàn hồi
Bảng số liệu 49
Ví dụ tham khảo 53
Phần II:
CƠ HỌC KẾT CẤU
Bài tập lớn số 1:
Tính hệ thanh phẳng tĩnh định
Bảng số liệu 65
Ví dụ tham khảo 68
Bài tập lớn số 2:
Tính khung siêu tĩnh theo phương pháp lực
Bảng số liệu 81
Ví dụ tham khảo 84
Bài tập lớn số 3:
Tính khung siêu tĩnh theo phương pháp chuyển vị
Và phương pháp phân phối mô men
Bảng số liệu 96
Ví dụ tham khảo 98
Phụ lục 108
Mục lục 109
Các file đính kèm theo tài liệu này:
- bai_tap_lon_sbvl_6022.pdf