Biến đổi khí hậu đang có nhiều tác động tiêu cực tới các loài động vật hoang dã, trong đó có ảnh hưởng đến
vùng phân bố của chúng. Các loài có vùng phân bố hẹp thường bị ảnh hưởng bởi biến đổi khí hậu nặng nề hơn
so với các loài có vùng phân bố rộng. Trong nghiên cứu này, chúng tôi đã sử dụng mô hình ổ sinh thái (phần
mềm MaxEnt), cùng với dữ liệu về sự có mặt của loài và các biến khí hậu để đánh giá ảnh hưởng của biến đổi
khí hậu đến loài Vượn má vàng phía Nam (Nomascus gabriellae), một loài linh trưởng đặc hữu, quý hiếm của
Việt Nam và Campuchia. Các dữ liệu về khí hậu được sử dụng bao gồm thời điểm hiện tại và hai thời điểm
trong tương lai (2050 và 2070). Hai kịch bản khí hậu RCP4.5 và RCP8.5 cùng với ba mô hình khí hậu
ACCESS1 - 0; GFDL - CM3 và MPI - ESM - LR được sử dụng để chạy mô hình. Kết quả cho thấy, vùng phân
bố của loài Vượn má vàng phía Nam bị giảm mạnh bởi biến đổi khí hậu. Nhiều vùng phân bố thích hợp bị biến
mất, đặc biệt là các diện tích có mức độ thích hợp cao và rất cao. Các vùng phân bố thích hợp còn lại có xu
hướng dịch chuyển về phía trung tâm và các khu vực có núi cao hơn. Đồng thời, chúng tôi cũng đánh giá mức
độ ưu tiên của các khu rừng đặc dụng trong bảo tồn loài vượn dưới ảnh hưởng của Biến đổi khí hậu.
10 trang |
Chia sẻ: hachi492 | Lượt xem: 12 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Ứng dụng mô hình maxent để đánh giá ảnh hưởng của biến đổi khí hậu đến vùng phân bố của loài vượn má vàng phía Nam (nomascus gabriellae), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 131
USING MAXENT TO ASSESS THE IMPACT OF CLIMATE CHANGE
ON THE DISTRIBUTION OF SOUTHERN YELLOW-CHEEKED
CRESTED GIBBON (Nomascus gabriellae)
Vu Tien Thinh1, Tran Van Dung2, Luu Quang Vinh3, Ta Tuyet Nga4
1,2,3,4Vietnam National University of Forestry
SUMMARY
Climate change has a variety of impacts that might have negative impacts on wildlife species, especially their
distribution. Species with narrow distributions are are more sensitive than the other species. In this study, we
used ecological niche modelling species (MaxEnt software), species occurrence data, and environmental
variables to assess the impacts of climate change on the distribution of Southern yellow-cheeked crested gibbon
(Nomascus gabriellae) - an endemic and rare primate species of Vietnam and Cambodia with narrow
distribution range. We used environmental variables to generate the potential distribution of Southern Yellow-
cheeked Crested Gibbon at current and two times in future (2050 and 2070). In addition, two scenarios of
climate change (RCP4.5 and RCP8.5) and three climate models (ACCESS1 - 0; GFDL - CM3; MPI - ESM -
LR) were used to evaluate the changed of suitable distribution in the future. The results show that the
distribution of this species was predicted to decrease dramatically under the effects of climate change.
Futhermore, the projections indicate that a larger suitable area will disappear. The suitable areas are likely to
shift toward the center of current distribution range and areas with high elevation above sea level. In addition,
we assessed the priority of protected areas in gibbon conservation under climate change context.
Keywords: Climate change, Gibbon, ecological niche modelling, Maxent, Nomascus.
I. INTRODUCTION
Southern Yellow-cheeked Crested Gibbon
(SYCCG) (Nomascus gabriellae) is an
endemic primate species of Indochina, this
species is only recorded in the Southern of
Vietnam and the Northeast of Cambodia (Van
Ngoc Thinh et al., 2010; Rawson et al., 2011).
Recently, the population of SYCCG has been
rapidly decreasing. The main threats to the
species are habitat loss, hunting (Geissmann et
al., 2000; Rawson et al., 2011). This species is
listed as Endangered on the IUCN Red List
(Geissmann et al., 2008). Gibbons are highly
sensitive to living environment because of
narrow ecological niche. They are often
recognized in tall evergreen and semi-
evergreen forest (Geissman et al., 2000) and in
the cool climate area (Pham Nhat, 2002).
Climate change is one of the main causes
of biodiversity loss, that is the direct impact
component and the consequences are obvious.
To adapt to the changes of climate, wildlife
species might shift their distribution poleward
or shift to higher areas where the ecological
conditions are more suitable for them (Root
and Schneider, 2002). Recent studies have
shown that a variety of primate species are
significantly affected by climate change in the
21st century, especially in Southeast Asia as a
hot spot (Graham et al., 2016) due to small
distribution range and narrow ecological niche
(Estrada et al., 2017; Sesink-Clee et al.,
2015). Especially, gibbons are predominantly
frugivorous, but the diet also includes leaves,
shoots and flowers (Nadler and Brockman,
2014). Therefore, climate change is also likely
to impact on their food sources (Wiederholt
and Post., 2010). Climate change also results
in fragmentation or loss of habitat, which is
one of the most serious threats to the primate
populations. In this study, we of assess the
impact of climate change on the distribution
of SYCCG. The study aims to achieve the
following objectives: (1) predicting the
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 132
potential distribution of SYCCG at current
and the future; (2) assessing the change of
the potential distribution caused by climate
change; (3) determining the priority areas for
gibbon conservation in the climate change
context.
II. RESEARCH METHODOLOGY
2.1. MaxEnt model
MaxEnt is software that uses predictive
methods to simulate the potential distribution
of species from existing information (Phillips
et al., 2006). Species occurrence data is used as
an input (called occurrence data), along with
the use of environmental condition variables
(such as temperature, rainfall, etc.) to
interpolate the likelihood of occurrence for
each grid cell. This model is the most popular
among ecological niche modeling programs.
Several studies have used MaxEnt to assess the
effect of climate change on primate’s species
such as Sesink-Clee et al. (2015), Gouveia et
al. (2016). In addition, the newest MaxEnt
version can be downloaded free from
ource/maxent/. In this study, the following
indexes were used: percentage of random
sample to test = 20%, regularization multiplier
= 0.2, maximum iteration = 1,000,
convergence threshold = 0.001, maximum
number of background points = 10,000.
The area under the response curve
(AUC), with values ranging from 0 to 1
was used under application of the Receiver
Operator Characteristic model (ROC) to
determine model suitability (Phillips,
2006). In this context, models with AUC
values > 0.75 (larger values meaning
higher model suitability) are usefull in
modeling species distribution (Elith, 2000).
When the AUC = 1, the predictive power of
the model is considered perfect. If the AUC
< 0.5, the predictive power of model is low
(Phillips, 2006).
MaxEnt generated a projection showing
levels of suitability for SYCCG with the value
ranging from 0 to 1 for each pixel. Cells with
greater values represented higher suitability.
This projection was generated in ASCII (*.asc)
format, then it was converted into raster format
(*.tif) by ArcMap10.1. In this study, we used
the value "equal training sensitivity and
specificity" to classify suitable level (> 0.1)
and unsuitable level (0 - 0.1). Then the suitable
level was divided into 3 categories: Highly
potential (> 0.5); moderately potential (0.3 -
0.5); and low potential (0.1 - 0.3).
Finally, to assess the priority areas for
conservation of SYCCG, we used 02 criteria.
Firsts, we calculated the area of species
distribution in each protected area lost due to
the effect of climate change. All protected
areas were evaluated with scores ranging from
1 - 5 points for different scenarios of climate
change. If the suitable area decreased by less
than 20% of the current distribution range, the
protected area was assigned 5 points.
Similarly, the protected area was assigned 4
points (21 - 40%); 3 points (41 - 60%); 2
points (61 - 80%) and 1 point (more than
80%), respectively. The second criteria used
the number of gibbon group in each protected
area. The area will receive 5 points, 3 points if
the number of gibbon group in this area is
larger 10 groups and less than 10 groups,
respectively. If the gibbon was previously
recorded in the protected area but no recent
records were confirmed, the protected area was
assigned 1 point. The maximum point for each
protected areas was 65 points. Therefore, we
divided the protected areas into 3 levels: high
priority (41 - 65 points), medium priority (21 -
40 points) and low priority (1 - 20 points).
2.2. Species occurrence data
We gathered a total of 431 independent
localities at that the occurrence of N.
gabriellae during field surveys and from
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 133
previous studies, including Dong Thanh Hai et
al. (2011); Pollard et al. (2008); Hoang Minh
Duc (2010); Hoang Minh Duc et al. (2010a),
(2010b); Ngo Van Tri (2003); Nguyen Manh
Ha et al. (2010); Channa and Gray (2009);
Tran Van Dung (unpublished), Vu Tien Thinh
et al. (2016); and Cat Tien National Park
(2004).
2.3. Environmental variables
* Present climate data
We gathered environmental variables from
Wordlclim ( (Hijmans
et al., 2005) (table 1). The spatial resolution of
the variables is 0.83 x 0.83 km. The range of
climate data used to run the model covered the
Indochina region, the Southern of China and a
part of Thailand.
To eliminate highly correlated variables,
data from 2,000 randomly selected points in
the region was exported to Excel for
calculating the correlation coefficient. The
Pearson correlation coefficient was used to
calculate the correlation between pairs of
variables. We used only one variable in the
pairs having a coefficient of correlation | r | >
0.85 for subsequent analysis. Finally, we used
8 variables, including: 04 temperature
variables and 04 precipitation variables (Table
1) for final modelling.
Table 1. The environmental variables used to run model
Variables Source Data type
BIO1 = Annual Mean Temperature Worldclim Continuous
BIO2 = Mean Diurnal Range (Mean of monthly = max temp - min temp)
BIO3 = Isothermality (BIO2/BIO7) (*100)
BIO4 = Temperature Seasonality (standard deviation *100)
BIO5 = Max Temperature of Warmest Month
BIO6 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (BIO5 - BIO6)
BIO8 = Mean Temperature of Wettest Quarter
BIO9 = Mean Temperature of Driest Quarter
BIO10 = Mean Temperature of Warmest Quarter
BIO11 = Mean Temperature of Coldest Quarter
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
BIO15 = Precipitation Seasonality (Coefficient of Variation)
BIO16 = Precipitation of Wettest Quarter
BIO17 = Precipitation of Driest Quarter
BIO18 = Precipitation of Warmest Quarter
BIO19 = Precipitation of Coldest Quarter
* Variable in bold are used for final analysis
Climate scenario
To predict the changed of SYCCG's
distribution in the future, we used climate change
scenarios from Worldclim (Hijmans et al., 2005).
The data was calculated from future climate
projection of General Circulation Models (GCM)
of the Coupled Model Intercomparison Project
Phase 5 (CMIP5). Base on the study conducted
by McSweeney et al. (2014), which evaluated the
suitability of different GCMs to predict the
Southeast Asia's climate, we selected the three
best available GCMs (ACCESS1 - 0; GFDL -
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 134
CM3 and MPI - ESM - LR), which was then run
under two different greenhouse gas concentration
trajectories (RCP4.5 and RCO8.5)
(Representative Concentration Pathways).
RCP4.5 is an intermediate emission scenario,
which is developed by Pacific Northwest
National Laboratory in the US. RCP8.5 is a high
emission scenario and it is developed by the
International Institute for Applied System
Analysis in Austria.
III. RESULTS AND DISCUSSION
3.1. Predicting the suitable distribution of
SYCCG at the present
The AUC values were higher than 0.92 for
all climate scenarios. Therefore, this model can
be used to predict the potential distribution of
SYCCG. The projection of this model
indicated the SYCCG's suitable distribution
range lies in the Dak Lak, Dak Nong, Lam
Dong, Dong Nai, and Binh Phuoc provinces
(Vietnam) and Mundulkiri (Cambodia). Past
distribution of this gibbon species covered the
Southern Central Highland region and a part of
Southeastern region of Vietnam and the
Eastern region of Cambodia (Van Ngoc Thinh
et al., 2010; Rawson et al., 2011). Therefore,
the distribution was generated by MaxEnt is
congruent with our understaning on the species
distribution.
The potential distribution of SYCCG can be
divided into two sections. The first section lies
in the Da Lat plateau withelevation ranges
from 1,200 - 2,200 m als. The main habitat in
this area is broad-leaved evergreen. The
second section lies in the Binh Phuoc, Dong
Nai province (Vietnam) and Muldokiri
(Cambodia). The topology of this area is quite
flat. There are two separate seasons in the
region: dry and rain seasons. Arcording Dao
Van Tien (1983), this is the suitable habitat for
gibbon species (Rawson et al., 2011).
At present, the total of suitable area for the
species is approximately 52,527.92 km2,
including: highly suitable (11,781.09 km2),
moderately suitable (23,184.30 km2), and low
suitable (17,562.53 km2) (Fig. 1).
.
Figure 1. The present potential distribution of N. gabriellae generated by MaxEnt
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 135
3.2. The shifts of distribution of SYCCG
under climate change scenarios
The extent of SYCCG distribution
decreased much under RCP4.5 and RCP8.5
senerios. In addition, while the larges in the
current distribution range become unsuitable,
the species distribution range did not extend to
new areas in the future. The suitable area
shrinked toward the center and mountainous
areas (Fig. 2, 3).
ACCESS1 - 0 GFDL - CM3 MPI - ESM - LR
2050 (a)
2050 (b)
2050 (c)
2070 (d)
2070 (e)
2070 (f)
Figure 2. The potential distribution of SYCCG under RCP4.5
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 136
ACCESS1 - 0 GFDL - CM3 MPI - ESM - LR
2050
2050 2050
2070 2070 2070
Figure 3. The potential distribution of SYCCG under RCP8.5
Under RCP4.5 scenario, on average the
distribution range reducedby about 60.64% in
2050 and 64.23% in 2070. Under RCP8.5
scenario, the species lost 62.77% and 72.83%
it’s distribution range in 2050 and 2070,
respectively (Table 2).
Table 2. The change of potential distribution of SYCCG area under the impact of climate change
Area: km2
Model RCP
2050 2070
Area Change % Area Change %
Present 52,527.92 52,527.92
ACCESS1-0 4.5 21,826.00 -30,701.92 -58.45 19,999.52 -32,528.40 -61.93
GFDL-CM3 4.5 18,758.27 -33,769.65 -64.29 17,492.45 -35,035.47 -66.70
MPI_ESM 4.5 21,433.69 -31,094.23 -59.20 18,868.09 -33,659.83 -64.08
ACCESS1-0 8.5 23,533.99 -28,993.93 -55.20 11,421.28 -41,106.64 -78.26
GFDL-CM3 8.5 17,511.23 -35,016.69 -66.66 18,976.46 -33,551.46 -63.87
MPI_ESM 8.5 17,628.28 -34,899.64 -66.44 12,422.67 -40,105.25 -76.35
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 137
The General Circulation Models (GCM)
GFDL-CM3 is the most influential model to the
distribution of this SYCCG. Under RCP4.5, the
estimated loss of suitable area was 46.29% in
2050 and roughly 66.70% in 2070. Furthermore,
the highly suitable distribution dropped
considerably to less than 1,000 km2 in 2070
(Figure 5). Regarding RCP8.5, the potential
distribution of SYVVG was most affected also
by GFDL-CM3 (35,016.69 km2) in 2050. By
contrast, ACCESS1-0 was the best model. It was
predicted that 41,106.64 km2 current suitable
area can be lost by climate change.
RCP8.5 had more impacts on the suitable
distribution of SYCCG than RCP4.5. In
addition, the model under RCP8.5 projected
that the suitable distribution can be severely
fragmented and was divided in to two separate
sections. The first section was in the South of
Dak Lak province and the North of Lam Dong
province. This area had the largest natural
forest in Vietnam, including: Chu Yang Sin
NP, Bidoup - Nui Ba NP and Phuoc Binh NP.
Furthemore, this area can be connected with Ta
Dung NR to form a biodiversity corridor (Vu
Tien Thinh, 2014). The other section is in the
West of Dak Nong Province. This area
connects with the East of Muldukiri Province,
Cambodia, in which the largest SYCCG
population was found (Rawson et al., 2011).
Climate change can have impacts on the
distribution a variety of species. However, an
endemic species or narrow distribution species
are more likely to be vulnerable. Thus, their
future distribution was predicted to decerease
dramatically than that of species with larger
distribution range (Levisky et al., 2007).
SYCCG is an endemic and restricted-range
primate species of Indochina. Gibbons prefer
to live in cool climate area and predominately
feeds on plants. Therefore, their distribution
depends on the types and quality of the forest
cover (Pham Nhat, 2002). Global warming can
also affect the distribution of vegettation
(IPCC, 2013; Virginia et al., 2001). Therefore,
the distribution of this gibbon can also be
affected considerably by climate change
throught the change of forest ecosystems.
However, in this study, we restricted our
invironemtal variables to only climatic factors.
Figure 4. The extent of suitable distribution of
SYCCG under RCP 4.5
Figure 5. The extent of suitable distribution
levels of SYCCG under RCP 8.5
3.3. The pritority protected areas for
Southern yeallow-cheeked gibbon
The modelled distribution of SYCCG
decreased significantly, especially within
protected areas. Six protected areas were
considered high prority, including: Chu Yang
Sin NP, Bidoup - Nui Ba NP, Ta Dung NR,
Nam Kar NR, Nam Nung NR and Pnom
Namlear Wildlife Sanctuary (Table 3).
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 138
Table 3. The pritority protected areas for Southern yeallow-cheeked gibbon under
climate change context
No Protected areas
Total
point
Priority
level
No Protected areas
Total
point
Priority
level
1 Bidoup - Nui Ba NP 65 High 10
Seima Protected
Forest
19 Low
2 Chu Yang Sin NP 64 High 11
Mundulkiri Protected
Forest
18 Low
3 Ta Dung NR 63 High 12
Nam Cat Tien
(Cat Tien NP)
17 Low
4 Nam Nung NR 59 High 13 Dong Nai C & NR 17 Low
5 Nam Kar NR 50 High 14
Phnom Prich Wildlife
Sanctuary
17 Low
6
Pnom Namlear
Wildlife Sanctuary
50 High 15 Yok Don NP 15 Low
7 Bu Gia Map NP 31 Medium 16 Easo NR 13 Low
8 Phuoc Binh NP 29 Medium 17 Nui Ong NR 13 Low
9 Cat Loc (Cat Tien NP) 24 Medium 18
Snoul Wildlife
Sanctuary
13 Low
The priorty rangking for long-term
conservation of SYCCG is important for
directing conservation effort to save this
species. Priority areas are less affected by
climate change. Additionally, these areas
contain the large population of SYCCG, for
example: Chu Yang Sin NP (166 groups, Vu
Tien Thinh et al., 2016), Bidoup - Nui Ba (at
least 25 groups, Rawson et al., 2011), Nam
Nung NR (at least 11 groups, Rawson et al.,
2011). Soe protected areas are holding a large
populaiton of SYCCG, such as Cat Tien NP
(149 groups), Bu Gia Map NP (176 groups,
Rawson et al., 2011), Seima protected forest
(432 - 832 groups, Pollard et al., 2007), Phnom
Prich Wildlife Sanctuary (149 groups, Channa
and Gray, 2009), however, environment factors
in these protected areas were predicted to be
less suitable with SYCCG.
IV. CONCLUSIONS
The MaxEnt software generated the
potential distribution of SYCCG using
occurence data and environment variables. The
current potential distribution area covers
52,527.92 km2 in the South of Central
Highland, Southeastern region (Vietnam) and
Southeastern region of Cambodia.
The model predicted that the future
potential distribution of SYCCG was
afftected by climate change under RCP4.5
and RCP8.5 scenarios. While large areas in
the species distribution range will potentially
become unsuitale in the future, no new areas
for this species are added to it’s distribution
range. SYCCG The species distribution
range will shrink toward the center and
mountainous areas.
High priority areas for long-term
conservation of SYCCG in climate change
context include Chu Yang Sin NP, Bidoup -
Nui Ba NP, Ta Dung NR, Nam Kar NR,
Nam Nung, NR and Pnom Namlear
Wildlife Sanctuary.
REFERENCES
1. Cat Tien National Park (2004). Assessing the
status of Yellow-cheeked crested Gibbon and raising the
awareness of local people using educational activities.
Report of Cat Tien National Park.
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 139
2. Dong Thanh Hai, Do Quang Huy, Vu Tien
Thinh, Nguyen Van Huy, Bui Hung Trinh, Nguyen
Trong Toan, Pham Ngoc Diep (2011). Assessing
biodieversity of Nam Nung NR, Dak Nong province.
Technical report of Vietnam National University of
Forestry and Nam Nung NR.
3. Elith, J. (2000). Quantitative methods for
modeling species habitat: Comparative performance
and an application to Australian plants. - In: Ferson, S.,
Burgman, M., editors. Quantitative methods for
conservation biology, Springer, New York.
4. Estrada, A., Garber, P. A., Rylands, A. B., Roos,
C., Fernandez-Duque, E., Di Fiore, A., Li, B. (2017).
Impending extinction crisis of the world’s primates:
Why primates matter. Science Advances, 3(1):
e1600946.
5. Geissmann, T., Dang, N. X., Lormée, N., &
Momberg, F. (2000). Vietnam primate conservation
status review 2000. Part 1: gibbons. Fauna & Flora
International, Indochina Programme, Hanoi, Vietnam.
6. Geissmann, T., Manh Ha, N., Rawson, B., Timmins,
R., Traeholt, C. & Walston, J. (2008). Nomascus gabriellae.
The IUCN Red List of Threatened Species
2008:e.T39776A10265736.
6A10265736.en. Downloaded on 12 January 2016.
7. Gouveia, S. F., Souza-Alves, J. P., Rattis, L.,
Dobrovolski, R., Jerusalinsky, L., Beltrão-Mendes, R.,
& Ferrari, S. F. (2016). Climate and land use changes
will degrade the configuration of the landscape for titi
monkeys in eastern Brazil. Glob Change Biol, 22: 2003-
2012. doi:10.1111/gcb.13162.
8. Hijmans, R.J., Cameron S.E., Parra, J.L., Jones
P.G., & Jarvis, A. (2005). Very high resolution
interpolated climate surfaces for global land areas.
International Journal of Climatology, 25: 1965-1978.
9. Hoang Minh Duc (2010). Conservation status of
the black-shanked douc (Pygathrix nigripes) and other
primates in Ninh Thuan and Binh Thuan Provinces,
Vietnam. Technical report to Center for Biodiversity and
Development and SeaWorld and Busch Garden
Conservation Fund, Ho Chi Minh City, Vietnam.
10. Hoang Minh Duc, Tran Van Bang & Vu Long
(2010). Population status of the yellow-cheeked crested
gibbon (Nomascus gabriellae) in Ta Dung Nature
Reserve, Dak Nong Province, Vietnam. Fauna & Flora
International.
11. Hoang Minh Duc, Tran Van Bang, Vu Long &
Nguyen Thi Tien (2010). Primate monitoring in Bu Gia Map
National Park, Binh Phuoc Province, Vietnam. Center for
Biodiversity and Development, Ho Chi Minh City, Vietnam.
12. IPCC (2013). Summary for Policymakers.
Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on
Climate Change [Stocker, T.F., Qin, D., Plattner, G. K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V. & Midgley, P.M. (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New
York, NY, USA.
13. Levinsky, I., Skov, F., Svenning, J. C., &
Rahbek, C. (2007). Potential impacts of climate change
on the distributions and diversity patterns of European
mammals. Biodiversity and Conservation, 16(13): 3803-
3816. DOI: 10.1007/s10531-007-9181-7.
14. McSweeney, C. F., Jone, R. G., Lee, R. W., &
Rowell, D. P (2015). Selecting CMIP5 GCMs for
downscaling over multiple regions. Clim Dyn, 44: 3237-
3260. DOI 10.1007/s00382-014-2418-8.
15. Nadler, T. & Brockman, D. (2014). Primates of
Vietnam. Endangered Primate Rescue Center, Cuc
Phuong National Park, Vietnam.
16. Ngo Van Tri (2003). Surveys primate species in
Yok Don National Park. Report of Yok Don NP.
17. Nguyen Manh Ha, Nguyen Hoang Hao, Tran
Duc Dung, Nguyen Manh Diep, & Pham Van Nong
(2010). Report of yellow-cheeked crested gibbon
(Nomascus gabriellae) survey in Dong Nai Nature
Reserve, Dong Nai province, Vietnam. Fauna &
Flora International/Conservation International,
Hanoi, Vietnam.
18. Pham Nhat (2002). Primates of Vietnam.
Agricultural publisher, Ha Noi, Vietnam.
19. Channa P. & Gray, T. (2009). The status and
habitat of yellow-cheeked crested gibbon (Nomascus
gabriellae) in Phnom Prich Wildlife Sanctuary,
Mondulkiri. WWF Greater Mekong Programme, Phnom
Penh, Cambodia.
20. Phillips, S. J., Anderson, R. P., & Schapire,
R. E. (2006). Maximum entropy modeling of
species geographic distributions. Ecol Model, 190:
231-259.
21. Pollard, E., Clements, T., Hor N. M., Ko S., &
Rawson, B. (2007). Status and conservation of globally
threatened primates in the Seima Biodiversity
conservation area, Cambodia. Project report.
22. Rawson, B. M, Insua-Cao, P., Nguyen Manh
Ha, Van Ngoc Thinh, Hoang Minh Duc, Mahood, S.,
Geissmann, T., & Roos, C., (2011). The Conservation
Status of Gibbons in Vietnam. Fauna & Flora
International/Conservation International, Hanoi,
Vietnam.
Management of Forest Resources and Environment
JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 2 - 2018 140
23. Root, T. L & Schneider, S.H. (2002). Climate
change: Overview and Implications for Wildlife, from
Wildlife responses to climate change: North American
case studies. Washington D.C.: Island Press.
24. Sesink-Clee P. R., Abwe E. E., Ambahe R.,
Anthony N. M., Fotso R., Locatelli S., Maisels F.,
Mitchell M. W., Morgan B. J., Pokempner A., & Gonder
M. K. (2015). Chimpanzee population structure in
Cameroon and Nigeria is associated with habitat
variation that may be lost under climate change. BMC
Evolutionary Biology, 15, Art. No.: 2.
25. Van Ngoc Thinh, Mootnick, A. R., Vu Ngoc
Thanh, Nadler T., & Roos, C. (2010). A new species of
crested gibbon, from the Central Annamite Mountain
Range. Vietnamese Journal of Primatology, 4:1-12.
26. Vu Tien Thinh (2014). Proposing green corridors
to conserve biodiversity of southern Vietnam in the
context of climate change. Journal of Forest and
Environment, 65: 24-31.
27. Vu Tien Thinh, Tran Van Dung, Giang Trong
Toan, Kieu Tuyet Nga, Nguyen Huu Van, Nguyen Dac
Manh, Nguyen Chi Thanh, Paul Doherty (2016). A
mark-recapture population size estimation of southern
yellow-cheeked crested gibbon Nomascus gabriellae
(Thomas, 1909) in Chu Yang Sin national park, vietnam.
Asian Primates Journal, 6(1): 2016.
28. Wiederholt, R., & Post, E. (2010). Tropical
warming and the dynamics of endangered primates.
Biology Letters, 6(2): 257-260.
ỨNG DỤNG MÔ HÌNH MAXENT ĐỂ ĐÁNH GIÁ ẢNH HƯỞNG CỦA
BIẾN ĐỔI KHÍ HẬU ĐẾN VÙNG PHÂN BỐ CỦA LOÀI VƯỢN MÁ VÀNG
PHÍA NAM (Nomascus gabriellae)
Vũ Tiến Thịnh1, Trần Văn Dũng2, Lưu Quang Vinh
3, Tạ Tuyết Nga4
1,2,3,4Trường Đại học Lâm nghiệp
TÓM TẮT
Biến đổi khí hậu đang có nhiều tác động tiêu cực tới các loài động vật hoang dã, trong đó có ảnh hưởng đến
vùng phân bố của chúng. Các loài có vùng phân bố hẹp thường bị ảnh hưởng bởi biến đổi khí hậu nặng nề hơn
so với các loài có vùng phân bố rộng. Trong nghiên cứu này, chúng tôi đã sử dụng mô hình ổ sinh thái (phần
mềm MaxEnt), cùng với dữ liệu về sự có mặt của loài và các biến khí hậu để đánh giá ảnh hưởng của biến đổi
khí hậu đến loài Vượn má vàng phía Nam (Nomascus gabriellae), một loài linh trưởng đặc hữu, quý hiếm của
Việt Nam và Campuchia. Các dữ liệu về khí hậu được sử dụng bao gồm thời điểm hiện tại và hai thời điểm
trong tương lai (2050 và 2070). Hai kịch bản khí hậu RCP4.5 và RCP8.5 cùng với ba mô hình khí hậu
ACCESS1 - 0; GFDL - CM3 và MPI - ESM - LR được sử dụng để chạy mô hình. Kết quả cho thấy, vùng phân
bố của loài Vượn má vàng phía Nam bị giảm mạnh bởi biến đổi khí hậu. Nhiều vùng phân bố thích hợp bị biến
mất, đặc biệt là các diện tích có mức độ thích hợp cao và rất cao. Các vùng phân bố thích hợp còn lại có xu
hướng dịch chuyển về phía trung tâm và các khu vực có núi cao hơn. Đồng thời, chúng tôi cũng đánh giá mức
độ ưu tiên của các khu rừng đặc dụng trong bảo tồn loài vượn dưới ảnh hưởng của Biến đổi khí hậu.
Từ khóa: Biến đổi khí hậu, Maxent, Nomascus, ổ sinh thái, Vượn.
Received : 07/01/2018
Revised : 27/3/2018
Accepted : 03/4/2018
Các file đính kèm theo tài liệu này:
ung_dung_mo_hinh_maxent_de_danh_gia_anh_huong_cua_bien_doi_k.pdf