Luận văn Chỉnh hóa một số phương trình tích chặp

CHỈNH HÓA MỘT SỐ PHƯƠNG TRÌNH TÍCH CHẶP PHẠM VĂN PHÚ Trang nhan đề Lời cảm ơn Mục lục Mở đầu Chương1: Công cụ. Chương2: Bài toán không chỉnh và phương trình tích chặp Chương3: Một số bài toán quy về phương trình tích chặp. Chương4: Phương trình chỉnh hóa phương trình tích chặp. Kết luận Tài liệu tham khảo

pdf23 trang | Chia sẻ: maiphuongtl | Lượt xem: 1837 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Luận văn Chỉnh hóa một số phương trình tích chặp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Chu'ang4: Plu(o'11gplu1pchlnhhoaphU'(fngtrlnhtichch(ip CHU'dNG 4: ltIIU"ONG PIIAp ClfiNII IIOA P IIU ONG....TItiNII -TI CIIC II~ P Trongchu'ongnay,chungtaapd~lI1gphllOngphapTikhonovdechInhhoamOt sO'phl(ongtrInhd,';lI1gtichch?pvadanhgiasaisO'gi[Yanghi~mchInhhoavanghi~m chinhxac. 4.1Phu'dngphaRthinhhocTikhonovtho bciitoan~~n tinh Gicl sa A : X -+ Y la mOtloan tt( tuye'ntlnh lien tt,ICgiiTahai kh6nggian Hilbert. Xet phuongtrlnh Av=u (v lafin). (4.1) Chungta thU'anh~nphuongtrlnh(4.1)co nghi~mduynhit VoEX. Ne'utmln ttI nglIQcA-I clIa loan ttI A kh6nglien tt,lCtIeDRangeA till phl((jngtrlnh(4.1) la kh6ngchInh.M?t khclc,ne'ukh6ngbie'tdl(QCgia tr~chinhxaccua u machI bie'tUn v6i ~nQtsai sO'0, tucla IluB- ul!s;0, till phlIongtrlnh(4.1)co thekh6nggiili dlIC}CVI Unco thekh6ngthuQCRangeA. Do v~y,chungta phai chlnhhoa phuongtdnh (4.I), t((cIa tlm mQtx£J'pXI vI)E.X chonghi~mchinhxacVosaGchosaisO'giuachungtu'ongdO'inhava nghi~m duQCchQnlamxip Xlphaiph~lthuQclien t~lCVaGduki~nno' D;nhnghia4.1.1 Phie'mhamTikhonovla(v) v6ia> 0 lingv6i phuongtrlnh(4.1)dlIQCxac c1tnhnhlIsau: la(v)=IIAv--uI12 +aI1vll2,VEX ! (4:.2) Hai loan tlm C~IClieu phie'mham(4.2)la co nghi~m,c16ngthai nghi~mnay clingla nghi~mduynhit clIamOtphlIongtrlnhchInh.Cu theb~ngc1tnhIy sauday: D;nhIt 4.1.2 Phie'mham Tikhonov (4.2)co duy nhit mQtqlc lieu VaE X va vacling ]a nghi~mduynhit clla phuongtrlnhbie'nphanchInh: * " av+AAv=Au (4.3) --- 28 Clnro-ng4: PhuO'ngphapchlnhhoaphuongtdnhtichch(Ip Chu'ngminh: 1.Tinhchlnhcllaphuongtrlnh(4.3). Xet anhx~songtuye'nHnha :X x X --+ R vdi: a(v,y)=a +. Anh x~a lien t\lCVl voimQiv,y thuQcX, taco: la(v,y)1=la +1::;al1+11<; <;allvll.llyll +IIAvll.IIAyil <;allvll.llyll +IIAI12 .11vII. Ilyll =(a+IIAI12 )1vII.llyll Anh x~ala khangtUvi voi mQiv EX taco: a(v,v)=a += al1vll2+IIAvll2~al1vll2 (4.4) . M~Hkhac,phie'mham h: X --+ R voi h(y)=la tuye'ntinhlient\lC. , Ap eI\lflgc1~nh1:9Lax - Milgram, tan t~ieluynh5'tVrxEXthoa: a(vu,Y)=hey),Vy E X =>a +=,vy E X => =,VYEX =>ava+A*Ava =A\, Ron nila,nghi~mVexplw thuQclien t\ICvaoell(ki~n.Th~tv~y: Gia sO'voi cI[(ki~nill, taco vulthoa: a(vexl'Y)= va voi elilki~nU2,tacoVex2thoa: a(va2,y)=,VYEX. SHYra: * a(vul-vu2,y)=:, Vy EX L5'y y =Val - Va2EX, ta duQc: allval - Va2112:::;a(Val - Va2' Val - Va2) =(A*(UI- U2)' Vnl - Vn2):::; :::;llval-vu211.IIAlllul-uJ IIA*II ~IIVnl--Va211<;-.IIUl-U211a -- 29 Chli(!ng4: Phli(Jngphdpchlnhh6aphli(Jngtrlnhtfchchr;ip 2. Chungminhcvc tiSucuaphiSmh~lln(4.2)clingla nghi~mcl'taphlicJngtrlnh (4.3)vangl(Qcl~i. Ju(V)-Ja(vu)=IIAv-lf -IIAvu -If +ex~1vII2-IIYuI12) -Sl(d\1l1gcong th((c: IIal12-1!bI12=Iia - bl12+2(b,a- b), taduQc: Taco: Ja(y)-Ja(Va)::::IIA(v-vaf +2(Ava -u,A(v-vJ)+-cxllv-vaI12 +- (4.5) +2ex(vu,v-vu)=IIA{v--vuf +exllv-vuI12+2(a.vu +-A*Avu -A"u,v-vu) * NSu Vala nghi~mcllaphudngtrlnh(4.3)tIll tU'(4.5)taco: Ju(v)-Ju(vu)=:IIA(v-VcJI12 +exllv-vuI12;::0, \Iv E:X =:>Vala C\(ctiSuClLaphiSmham(4.2) * NguQcl~i,nSu Vala q(c tiSuclla phiSmham(4.2)tIll khi thayv =Vn + ty ~t>0,Y E:X) vaG(4.5), ta du'(!C: t211Ayl12+ t(exva+A*Avu ---A\I,y)+ex.t21IyI12;::0 Ddn gianchot,saudo Iffygidi IwnhaivS khit ~ 0 tadu\jc: (A*Avu +exva-A*u,y);::O, \lYE:X (4.6) VI (-y) E:XDentaclingco: (A*Avu +exva-A*u,(-y»);::O, \lYE:X (4.7) TU'(4.6)va(4.7)suyra: (A*Avn+exva-A*u,y)=O, \lYE:X '" " =:>AAva +exvu-A u=O V~y:Vala nghi~mcllaphl(dngtrlnh(4.3) K9 hi~u: V~tla nghi~mCllaphlicJngtrlnh: exv+-A"AV =A"un PhepcblnhhoaTikbonovseIffyv~langbi~mchlnhhoachonghi~mchfnhxac VocuaphudngtrlnhtuySnHnhAv=u,Lrngvoisaiso'trendllki~nlao. exduQcgQila thamso'chlnhhoa. ]0 Chuang4: PhuO'ngphdpchlnhh6aplncO'ngtrlnhtichch(1P * Tn(dnghQpto<1ntli A Ia tuyC'nHnhcompact,nghi~mchlnhh6a tlmc1t((Jc6 th~khongph~lthuQclien tl,lCvaodCi'kj~n. M~111Jc1~4.1.3 Cho A : X -+ Y Ia loantli tuyC'nHnhcompactgiiJ'ahai khonggiandjnhchu5n, trongd6 dim ()kerA)=OO. Khi d6 t6nt~iday {vJc X maAvn-+ 0 nhtl'ngvn+ 0 khi n -+00.Hon nCi'a,tac6thcichQn{vn}eX SilOcho Ilvnll-~00. C/llJ'l1gminh: Vi KerA Ia mQtkhonggiancond6ngcllaX Hen)kerA la mQtkhonggian dinhchu5n,vdi chu5n: II[ v]11 = inf Ilv+zllzEKerA Xac d1nhloantli A: %erA -+Y nht(sail: Vdi mQi[V]E )kerA' A[v]=Av Ta thayngayloantti A laxacd1nh,tuyC'ntinhva1- 1. Bay gid taclll'fngminhA Ia loantt?(compact.Th~tv~y: D~tB= {vEx:llvll<l}va13={lv]E)kerA:IIIV]II<t} (B,13lacachinhcaudonvi m0IanIuQtrongX vatrong)kerA) Ta phaichungminhA(13)la t~pcompactt(cingd6i trongY. Do A la loantt(compactnenA(B) la t~pcompacttfdngc16itrongY. Vi A(13)={Av: III vlll<I}c {Av:Ilvil<I}=A(B) nen A(13)la t~p compact!tt(ong d6itrongY, nghlaIa Acompact. Ta chungminhA-I: RangeA =RangeA -+ )kerA khong lien t\lC. NC'u A-I lien tl,lC thi to<lntll c16ngnhat A-IA =I :)kerA -+ )kerA Ia compact.(dodinhIy 1.2.2).Tasuyradim)kerA <00 (dodjnhly 1.2.3),trclivdi giel thiC't.V~y A-I khonglien tl,lC. 31 ChuCYng4: PhuO'rlgphdpchlnhh6aphuC!ngtdnhtfchchc;ip Di~u do co nghia Ia t6n t<;liday {vn}c RangeA,un~ 0 nhlingA-I Un --f~ 0 khi n ~ 00. GQi U" ==Av"==A[v"J,the'thlt6ntaiday{[v"J}C%erA thoa: A[v,,]~O vaII[v"JII~8>o, n =1,2,3,... Voi mQi n, IflY ZnEKerA saGcho llYn+Znll~~ vac1~tv'11= Vn+Zn SuyraAv'n=Avn~Okhin~oova Ilvlnll~~ , n= 1,2,3,...2 , ;!"" ~.- v'n Co theglasl1Av n T- 0 \in. Tac1~tVn= rFI--- Ilv' ,,11'\j IIA v' "II IIA v~ s2 ,~ IIAV"II==]Vnll)IIAV'nll Ilv'nll_s va Ilv"II= Ilv'"11.5v'n II IIAv'nll . -- ~ 0 khl n --~00 8 ~ 00 khi n ~ 00 IIAV'nll Tuy nhien chungta co th~h9-nch@Gt(Qcsai so'gdTanghi~l11tinh loan va nghi~mchinhxac khongvliQtquaso'hC(ul19.nnao(10,n@utab6 sungthongtin thu hypv~nghi~mchinhXclC. 4.2 Sai 56tnJonghdp xdu nhat(worst- caseerror) Dinhnghia4.2.1 Cho A : X ~ Y Ia loan tU'tuy@ntinhlien t\)CgiUahai khonggianBanachva Xl c X Ia l11Qtkhonggianconvoi chu§'n11.llxll11<,lnhho chu§'n1I11trenX. Voi 8,E litcachhngso'duongchotrudc,tagQi: ..sY\8,E,II.IIx,)=sup{llvII:v E XI ,IIAvllS 8,IlvIIxI s E } Ia saiso'trlionghQpxa'unha'tlingvoi so'8 trenda ki~nva thongtin them IlvllxlsE. Y nghiaciia khai ni~mnayIa : N@uco thel11thongtin v E Xl, Ilvllx]sEthI sai so'giUanghi~mchlnhhoava nghi~mchinhXclCciiapht(ongtrlnh(4.1)khongIOn h(5n..9-(0,E, 11.llxl). 32 Chu:ong4: Phuongphdpchlnhhoaphuongtrinh tlch chr;ip Nhuv~ymQiday{vn}eX thoaAvn-+0 t1~uhQitl,1v~o.Mauthl..anvai ke't quaa m~nhd~4.1.3.M~nheM4.2.2duQckh£ngdjnh. Ne'uclwn XI =A* Y ho~cXl =A* AX la ca.ckhonggianconclIaX vaicac chuffn11.1Ix1m~nh dnchuffn11.11vachQnthallis6chlnhhoaa trongphu'dngtrlnh (4.3)thichhQP,taco caedanhgiasais6giG'anghi~mchlnhhoava nghi~mchinh xacnhusail: DinhIt 4.2.3 ChoVoEX,uoEYthoa: Avo=Uo (4.9) a)Gia su VoE A"Y tUGla Vo=A"ul'u, E Y. Vai 0 tachQna«5)=<5va ne'u HEY la dli ki~ndod~cthoaIIu - uoll:::;<5thltaco : IIv8-vall:::;~(l-l-IIulll)8~ ,b) Gia su voEA"AX, tUGla Vo=A*Avl,VI EX. Vai 0 ta chQn a«5)=<5X va ne'uUEY la dli ki~ndo d~cthoa Ilu- lIo!! s <5thl ta co : V,r, -VoIIS(IIAII+~hll)oX Chungminh: TU'phl(dngtrlnh(4.3)vad£ngthuc(4.9)tasoyra: { a:a -I-A*A:a =A"u AAv =Au0 0 TrU'haid&ngthuctheotU'ngve'tac1l(QC: * " ava-l-A A(va-vo)=A (ll-Uo) " " => av(x -avo +A A(va -vo)= A (u-uo)-avo , Tich vo huanghaive'vOi( Va- Yo)tanh~nc1uQc: a -I- " =-a+<A (U-lIo),(Va -Yo»~ => allva -vo112-I-IIA(va -vo)112=~a-I-<lI-uo,A(va -Yo»~ (4.to) 34 Chuang4: Phuangphdpchlnhhoaphu'angtrll1hrichch(lP a)Biend6ivephcliclh (4.10),tac6: =<u-uo,A(vu -vo»-a<u[,A(va -Yo»~ ~llu-uoll.IIA(va -v(JII+allulll,IIA(va -vo)II=~lu-uoll+allu,II).IIA(va -vo)1I ~ ~~lu-uoll+alluIIIY +IIA(va -vo)II2 (nhobfttd~ngthl(c:4a2+b2~4ab) Thaya =a(o) =0va liB- Boll~O. Tli' (4.10)ta c6: olivo-vo112~~(o+81IuIIIY4 ~llvo-voll~ 8fC.(1+llu,II)=~(1+llulll~~ 2-v8 2 b)Tli c1jnhIy 1.1.3tac6: IIA(va:-vo)II2 == =112 Thayd5ngthti"cnayvao(4.10),vdi ChU)T Vo= A*Av) =Cv), ta UlCQC: allva -voll2 +IIC(v((-vo)112= ~IIAII.llu-uoll.llva -voll+al<v"C(va -Yo»~! ~ a Ilva - V0112+~IIAI12.llu - Uo112+5£IIV I 112+IIC( Va - V0)1122 2a 4 ~ ~IIVa - V 0 112~ 2~ IIAI12,liB - Uo112+:2 Ilv1112 ( 1 2 2 a 2 J ~ ~lIva -voll~ a211AII.llu-uoll +211vlll Thay liB- Uoll~0 va a =a(o) =oX,ta C1l(QC: v,x-Voll~(IIAI12bX+~1Iv,112b%t hay 11v,%- v"II S; (IIAll'+~hll' Joy, . Nho bfttc15ngthLrca2+b2~(a +b)2, (a ;:::0, b;:::0) tac6: 3S ChuO'ng4: PhuO'ngphdpehlnhh6aphuongtrlnh({eheh(ip v,%-Voll~(IIAII+~hll}oy, 4.3 Ung dung phlidng phap Tikhonovchinh hoc phlidng trinh tich chap GiasliA: L2(RI1)~ L2(RI1)gWahaikhonggianHilbertvdi Av(x)= fK(x-t).v(t)dt, VvEe(RI1) R" Khi d6A la loantli tuye'ntinhlient\ICvaplnidngtrlnhAv(x)=lI(X) c6 cI<;lng tkhth~p: (K*vXx)=fK(x-t)v(t)dt=u(x) R" (4.11) Bai loantlmvex)vdi da ki<%nu(x)clla pln(dngtrlnh(4.11)(nhll'oa trlnh bayCJ 2,3,Chuang2) n6ichungla khongchlnh.Ap d\lllgphepchlnhh6aTikhonovchob~ti toantuye'nHnh,tatlmnghi<%mchinhh6acuaphlidngtrlnh(4.11). * Tn(oche't,taxacdjnhtoantt(lienhQpA" cuaA. VfEL\RI1), taco: == f(K * vXt).f(t)c\t= f [ fK(t - 1:).v(r )d1: ] f(t~lt RII RI1 RI1 =JUK(H)f(l)dt]V(.jd. Xet <p(1:)= fK(t-1:)f(t)dtEL2(R"). (djnh 19Fubini) RII SHY ra = M~Hkhac " = (djnh191.1.2) :::; =, Vv EL2(HI1) :::; =O, VvEe(Rn) Lffy v=(A"f-(p)Ee(R"),tac6: IIA*f-<pll:=0 36 Chuang4: Phuangphripchlnhh6aphuCJngldnh tichch4p ~A'f(T)=(p(T)= JK(t-T)f(t)dt h.k.ntrenRo. R" £)~tp(x)=K(-x), \/x E Ro, tac6: A '[(T) =(P * OCT) h.k.ntren RI1. /\ /\ /\ /\ /\ /\ =>A* f =P* f =p.f =K. f (4.12) Khi d6 phlidngtdnhchlnhh6a (Xv+A*Av =A\lo tlidngc1twngvoi phlic1ngtr}nh: <xv+ p* (K * v) = p* Uo (4.13) Bi€n L16iFourierhaiv€ cua(4.1.3)va sll'd\lflg(4.12)taC1liQc: /\ /\ /\ /\ 1\ /\ a. v+K K. v =K. uo (4.14) VI phlidngtrlnh(4.3)lachlnhBen(4.14)IamOtphlidngtrlnhchlnh. Ki hi~u: -- /\ /\ ~J1~(t)= K(t).uo(t) a +IK(tf 1\ VI ~ISEe(R")val K(t) 2 1 ~ I, Hen~p~Ee(RI!) 1 /\ 1 2.ya a + K(t) V /\ £)~tv~(x)=~J1~(x)=>v~(t)=\F~(t)~v~Ee(R") V~y nghi~mchlnhh6a v~E e(RI!) clJa phli(jngtrlnh tich ch~p(4.11) GliQctinhtheoc6ngthuc: S 1_- J ~(tLt~~(t;-.eXP(ixt)dtv (x)=- ( )"/2 1 /\ (~ a 2n R" a +K t1 Tli L1!nhly 4.2.3,tac6h~quasanclay: He gull4.3.1 Cho VoE e(RI1), UoE 1}(RI1)thoaphlidngtrlnh (4.11). 37 Chu:c'Jng4: Phu'(Jngphdp chlnh h6aphu'(/ngtrlnh tfchchr;ip a)GiclSl(VoE A*(e(Rn )), luc la vJx)= fK(t x).f(t)dt, f E C(R"). Vdi R" 0>0, tachQna(o)=0, Khi do,ne'uuE L2(R") la di1ki~ndoc1~cthoaman: Ilu - Uo112::;;0 thl ta co live-voI12::;;~(1+llfI12~'/2 (4.15) b) Oi:! sli v0 E A' A(L' (R' )), tlie lit v0 (x)~ J(JK(t- x).K(t- T)f(T)d+t , fEL2(R"). Voi 0>0, tachQna(0)=02/3.Khi do ne'uuEI}(Rn) la dC(ki~n doc1~cthc)aman(4.15)thltaco: hili -voll, S(IIAII+~llfll,)01/1 Chungtabie'trhngne'uthongtinthuh~pvenghi~mch1nhxactrenmQtkhong gianconcangnhothlsaiso'giUanghi~111ch1nhoavanghi~l11chinhxclccangnhc). TuynhiencackhonggianA"(L2(R"))va A"A(C(R")) rit nIle),thl(dngla g6mcac hamthuQclOpCO'Jnenvi~cx~icdinhchungfit khokhan. Phftndl(oiday,chungtase danhgia sai so gii1anghi~rncblnbboava nghi~rn chlnhxac CUdphl(ongtrlnhHchch~p(4,11)voi gia thie'tnghi~mch1nhxac thuQc khonggianconSobolevHI (Rn)(rQnghoDcackhonggiannoitren)vdichutln11.11111: IHIII =(IH~+IIDvll~)~=(!HI: +IIDVII:)~.=(IHI: +lllll.~II:)~ { 2 2 } 1/2 { 2 } 1/2 = J~ dt+Jt2~dt = J(1+t2)~(t~1t chotnidnghc;1Pd~cbi~tvoi li«ti =M.exp(-PltlY), (4.16) ( ) 1/2 voit=(tl,t2,...,tJER",ltl= tt~ vaM,P,rIacaehangsodu'eing. Nh?n/\xet: IK(nl cod~ng(4.16)lahich~nvaItl.IK(t)1cungbich~n (doIK(t)1~ 0theocip exp(-PIW).Tacoke'tCjmlsaisotn(dnghQIJxiu nhfll 38 Chuang4: Phuongphdpchlnhh6ap/1l((Jngtrll1hrichch~lp vac1<1l1hgiaSRiso'gilia nghi~mchinhhoava nghiemchillhxac clla p11lJ'ongtrlnh (4.11)trangL\RIl) nhtisan: Mt?nh c1~4.3.2 Giil stI nghi~mchinhxac VoCttaphu'ongtrlnh(4.11)tlltlQcHI(RIl) va II«(l1co :l?ng(4.16).Khi do SRiso'tnionghc;1pxilunbiltthoamanbiltc1~llgtlltI'c: "r(8,E,/it,I)< ~ 1/2khi6~ 0' .' (1U8) trongdo C Ii]hhngso'chIphl;!tbuQcvilaE. Chu'ngminh: Xet v E HI (RIl) thoa: IIAvll2::;;8 va IlvIInl::;E 1\2 f(l+t2)v (t)dt=llvII:rl::;E2 R" =:> J.M,.eXP(2~ltl');'(I)dt=IIK;I[= IK~Iv[ =IIK*vll:=IIAvll:<;6' Vdi a> 0 tily Y (ta se cllQUl?i a tbichhc;1p)till: 1\2 l+t2 1\2 1 ) 1\2 E2 fv (l)dl::;f ~.v (t)dt::;~ f(t+t2v (t)dl::;~ 1'1>" Itl>ol+<1 1+a R" l+a (4.17) 1\2 M2exP ~ 2~ l t I Y)1\2fv (l)::; f . 2' - -:y v (t}lt::; 1'1:;" Itl<:oM .exp -2~<1Y) 1 2 ( . Y)1\2 82<. M exp- 2~t v (l)dt<-:-- - M2.exP(-2~ay)J' II -, M2.cxp(-2f3aY) (4.18) Xet p1n(ongtrlnhin a: F2 82 F2M2 ~~ = ( )(1+ a2)exp(2~aY)=-~l+a2 M2.exp-2~aY 82 E2M2 (chQnsRiso'8 tren dli ki~nc1t1be c1€ 7~ > 1) Hamso'y(x)=(1 +x2 )exp~~xY) tren(O,+«J)la hamso'tangvaco mi~ngiatrj a (1,+00)Henp1niongtrlnh(4.19)co nghi~mduynhflta=al) thoa linl al) =+00 . 1)-70 (4.19) 39 Chuang4: Phu'ongphcipchlnhh6aphuongtrlnh{{chCh(ljJ ~(1 2y )/-' +a , B~t A= 2 >0, taco:l+a { A(I+a2)=~(I+a2Y)22~aY 1+a2 >In(1 +a2) => ) E2M2 (I+A)(I+a2 >2~aY+In(l+a2)=ln z8 ,=> I 1+A -<-- 1+a2 E2M2 In-- 82 (4.20) TiY (4.17), (4.18)va (4.20),voi a =al) tac1ttQc: 1111 2 11 /\ 11 2 /\2 /\2 /\2 2 V 2 = V = fv (1)01= fv (1)dt+ fv (1)otS 2E <2E2 (1+A)= (1+A)E2 2 R" l'l>as Itl-;;as l+a~ E2M2 ( ~ ) 1 In-- In bM +In- 02 0 )IP C +(1+A 13 khi 0 --+0 =>11vII2< 1 1/2~ ( 1 ) 1/2 (In(EM)+In8) In8 V~y:.!r(o,E, 11.1111')< ( ~ ) 1/2 In-- 0 khi 8 -t 0+ fJ Neu stt d\lllg phttdng trlnh(4.14)voi a=8 d€ chlnhh6a phttdngtrlnh(4.11) trong0611«(11c6d~ng(4.16)tacoketquac1:1nhgii saisagifi'anghi~mchll1h6a vanghi~mchinhxactrongL2(Rn)nlntsau: Menhd~4.3.3 Gia Sttnghi~mchlnhxacVocllaphtt'dl1gtrlnh(4.11)thllQCHI (R"),trong(16 11«(1)1,c6 d~ng(4.16) va lll) la dfi' ki~n do d~c voi !IllI)-Un II~8 . Khi d6 t6n tai nghi~mchlnhh6a vI)(li'ngvoi a =8)saocho: c Ilvo -vo112 <1 In- 0 khi 8 -t 0+ ,trongd6C la h~ngsachiphl,ltl1llQCvao!lvolllI' 40 Chuang4: Phuangph6pchlnhh6aphuangtrinhtichdt(lp Chu'ngminh: Ghl Sl(a =0, tUcacphuongtrlnh(4.11)va (4.14)suyra: ! I«(t).~o(t)=~I()(t) &~,(t)+IK(t1'.~,(t)~k(t)~,(t) (4.21) (4.22) (4.21) => I) ~'" (f)+<.({~o(t)=~(l)~o(t)+I) ~o(t) (4.23) Tt( (4.22)va (4.23),tadt(Qc: ( ) 11 2 ( ) - ( ) A A A A A AA A A 0 vs-vo +K . VS-Vo =K. US-Uo -o.Yo (4.24) NMn hai vi! cua (4.24)v<Ji(~8(t)-~"(t)J f6i 15y Uehphonhai vi! tfen R" ta duQc 2 2 ( J -- ( -~- J A A A A A A A A A A A A A °llv.-voll, + K{v-V.), ~-ojvo V5-V" eltIJK{U'-uo) v.v.ell Sa d~lngbatd~ngthlicHoldervathayII~IS-- ~IOt =Ilus- Uo112so, chuy I( (1)hi chi;ln.Sail d6rutgQntaduQc: °ll~'- ~'II:+IIK(~'-~"{s OCIHI,+III<lljl~' ~"II, (4.25) Bo botsOh:;1ngthlihai(j vfi traiclla (4.25)tac1tiQc: °ll~,-~oll,~IHI,+11.='1', (4.26) Bo botsOlwngthlinhatd vfi traiCUd(4.25)vadung(4.26)suyra: IIK(~5-~oJII:~8f,' 41 Chuang4: Phuongphdpehlnhh6aphu'o'ngldnh tiehdl(ljJ Ti€p tl,lenhanhai v€ eua(4,24)voi ItI2(~o(t)-~o(t))r6i lily tiehphanhai v~ t A RII dA -'*A'fen , an lien: () ll ltl,(~o-~o) 11 2 + ll ltl,I«~o-~o) 11 2 ==-()fltI2~O(V8-Vo)dt+ fltI21«2t8-2to)(~o-~o)dt 2 2 R" R" Ap dt,l\lgbiltcHingth((eHolderehocaetiehphana vi ph{tivoiehuy 1+«t)1 bieMn,sand6thay II~'-~,tso vaIlltl;°11,~ IIDq,00 IIDv,ll,. ta at(de: 2 2 ollltl(~8-~0)11 + ItII«(~8-~0) soIIDVoI12 11 It1C~8-~0) 2 2 112 +0111111[(1Jltl(~"-~"t, .. (4.27) Eo botso'hangth((haia v€ tnlietlabilta£ngth((e(4,27)taco: 111(;'-;0)11,S; IIOY0 II, + It I Kt='1', Lily a> 0 thyY ( taseehQnl?i athichh9P),taco: 2 2 2 I 1 2 f I vo-vo l dt= f ;0-;0 dt~ fItI2.a-2;0-;0 dt~a-2flf ;0-;0 dt Itl>:I Itl>:I Itl>:I R" , II /\ /\ 11 2 T2 =a-2Itl(vo-vo) ~-+ 2 a II 1 2 /\ /\ 2 2 "',Vo-vo dl= f V'-Vo dl'; f M exp(-2fJlll')IA _A 1 2 11- Itl~a II M2ex (- 2R. Y) ,Vo Vo dt~ t~a IJa 1 ~ f 2 Y 1 /\ /\ 1 2 M2exP(-213aY)R"M exp(-2~ltl )vo-vo dt /\ /\ /\ 2 K(vo- Yo)II = .. 8T2 22 <---L M exp(-2~aY)- M2 exp(2~aY) 42 Chuang4: Pln((jngphdpchlnhh6aphuangtrinhtfchch~lp GQi TJ = max rrj2,T;} (T3ChIph~1thuQcvao JJv011111), ta SHYra: IIVI)-voll~ = flVI)-v,Jclt+ flVI)-Vol\lt:::;T3 [-;-+--;eXP(2f3aY) ] 1'1>:1 1'1$" a M Xetphltclngtrlnh5na: 18M2 -- =-exp(213a Y) a2exp(2pa Y) =-- a2 M2 8 (4.28) THullsOy(x)=x2 exp (2pxY)tren(0, +co)lahamsOtangvami0n giatri la (0,+co) Henphl(clngtrlnh(4.28)c6 nghi~mduynhata=aothoa lim al)=+00 1)->0' ChQna =ao,khid6 Ilvl)- v()ll~s ~~3 al) (4.29) ~ pa1 - Y J-)~t Ie=- >0, ta SHYra leal)=pal) al) M2 ~2(1+Ie)al)=2al)+2leao>21nao+2Pa1=ln8 2 --2 ~ ~ < 2(1+Ie) '1 2 <0 M2In---- 0 2(1+Ie)=1 1 In- +21nM 0 (4.30) Tli (4.29)va(4.30)chofa: IIVI)-Voll~<2T3 [ ~(I+A) ] 2 In -- +2111M 0 II II )2 rI~- 2(1+11,) C -kl 'S:: ( - ) " V -v < ~- 11u-t I) °2 3 1 1 In- +21nM In-- 0 8 C la hhngsO'chIph~thuQcvao Ilv011111 . Bay giGxetcacphl(clngtrlnhtichch~ptL(clnglingtuhaib~tiloannhi~tdffneu trongchuclng2. Phuclngtrlnhctiabai loannhi~tnguQcthaigian: (K,*VXx) = II=-+1exp[=(x- ~2)].V(~)d~= u(x), X E R2-v1[ -co 4 (4.31) 43 Clu[(Jng4: Phli(jngphcipchlnhh6aphu'(Jnglrinh tfchch~lp Pl11idngtdnhcuabai loannhi~ttrang16khoanthamclo: (K *vXt)=~=ft .v('"C) exp [ --1 lh=u(t),t>O2 2-Jno(t-'"CY/2 4(t-'"C)J (4.32) Menh d~4.3.4 Ghi sli nghi~mchinhx~.cVocuacacphttdngtduh(4.31)va (4.32)IhuGCH1(R) U'ngvdiciaki~n U va lIo la ciaki~ndo d~cvdi Iluo-lIII2 ::;;O. Khi do 1ll6iphu'dllg Irlnhd€lI 16nt~tiIlghi~mchlnhhoa v0(U'ngvdi a =0)saoclIo: live-vet<~ khi0 -+0+ 111- 8 trongdoC la h5ngso'chithuQcIlvolllli. Chung l11inh: Ta chic~nch((ngto 11(1(1.1va11(2(~ico cl~lng(4.16),saudo apcI~lJlgk€t qua Cllam~nhd€ 4.3.3. ( 2 ) 1 -x Ta co : K, (x)=2FnexP 4- B€ y f(x)~ eXJ1( -:2 }os(tx)U1hams6 chanva g(x)~ ex{-:~}iII (IX)la hams6le. f\ 1 +00. 1 +w ( - 2 JKI (t)= r;;- fKI (x).exp(--itx)dx= r- fexp.f- .exp(-- itx)dx...;2n._" 2n...;2__" 1 [ +00 ( 2 ) +00 ( 2 J ]=2n-.Ji ,£exp -;- cos(tX)clx-i,£exp-;- sill(lx)clx ~ n~2'[exr(-:}OS(tX)dX Su'clt.lJlgCGlIgIh(tc tich phfll1: "," 1 - t2 fexp(-ax2 )cos(tx)dx=- r- Fn exp(--)0 2...;a 4a ChU'O'f1g 4: Phu'angphdpchlnhh6aphwJ'ngtrinhtfchch~lp A 1 ( 2\Ta CO:K,(t)= ~exp --t };2n ~11(I(ti=J~n exp(-t2} v?y IK,(ti eod~ng(4.16)yoi: M =k,p =l,y=2 TaeoK2(t)=J 2t'!~j;exp(- ~J,t>0 10 ,t~O 1\ 1'00 1 +00I ( -1 )~ K2 (~)=-~ fK2(t)exp(-it~)dt=~ f-'/2exp- .exp(-it~)dt;2n 0 2n ;2 0t 4t 1 [ +00 I ( - I ) +00 ( ]~ 2nfi J, V, exp4r cos(,~)dt- i J [~,exp ~~}in(t~)d[ . St(d~lI1geaee6ngthueHehphan: +1 ;/2 exp( - a ) cas(tx)dx=Eexp(--J2at)cas-J2a! oX X ~~ 'J-i2exr ( -a_ ) sin(tx)dx=Inexp(--J2a!)sin-J2at oX X ~a ta Ol(QC: 1\ 1 [ ~'. fl~l jK2(~)=J2;exp -~2'-1~2 ~ 1 1<2(~~=~ exp [ - rl~l-i {jij ] =~exp ( - rl~l ]1 .12n ~.2 ~2 -J2n ~.2 1 1\ ~ . 1 1 1 V?y K2(t1cod~ng(4.16)yoi: M =-J2n-,B=Ii' y=2- /1 Chuang4:Phuangphdpchlnhhoaphu(Jl1gtrlnhrichch(ip 4.4.It-nitngb.iem. rheincu6icungcualu~nvannay,chungtachIc6g~ngtimhiOOdangcuanghic$m chinhxaca6ivdihaibailoanngu<;1ccuaphuongtrlnhnhic$ta5neuC1ChlfC1ng3 000chuangtrlnhMathematicavdigiiithie'tdingsai56trendl!kic$nla sais6sinh radocaebudcxa'pxitrungianvatutiOOloancuamaytinh. I. Bditoannhietngu(1thaigian. Giii sau(x,O)=vO(x)la hamdu<;1cxacdinhnhtfsan: ~[~ :=»p[-(2/3)*~x] 2x2 e---Y BiSudiSnd6thicuahamvO(x): .-/_.J.- --',. / " / 0.' " / "- / n, -'" /' . / "- // n 4 "". =~~=:~~/./ 0 2 "',,-. "', - , - 1 ~--- ~._.:::~-=-~.::::_.=- Theocongthlic(3.10)tac6u(x,l)=uO(x): t'D[x-.J:=(1/ (2*91tt[Pl]»* n,l~rale[~[-«x-z) * (x- z» /4]*vO[z], {z,-:rn5ni.qr,+Infiniq.} ] )3 -~-ell11 Nhuv~yvO(x)langhi~mchinhxaclingvdidll ki~nchinhxacuO(x). Bie'nd6iFouriercuau(x,I)hi: U2[z.J := ~1r'i~~[t'D[XJ , x, ~ 1 . 11z2 - -J3 e-8- 2 Bie'nd6iFouriercuanhanK1(x): 46 C/lltang4:Phuangphdpchlnhh6aphuangtrlnhrichch(ip. k2[z..J:=~ -z"2] /9:;Ir:t[211'Pi] e-7l- ..;2; BlnhphttdngcuamodulicuanhanK1(x): kZ2[z]:=E}p[-2*z"2]/ (2*Pi) -2:02e 271" Choa =0,001,tac6bie'"nd6iFouriercuanghi~mchinhh6a: ~[z] :=k2[~*tQ[~/ (O.<Dl+k22[~) _197l-[ie s- ~2.>1 2 (0~~~-;:-:~::~~-) -- 2n VI thongthSIffyFourierngu9ctru9ctie'"ph~llnv2(z),tadungxffpxi dathuctrtf{jc khilflyFourierngu9cnhusau: Ruoc1:T~obanggi:itris6cuahamv2(z): T= 'J1:Ib1e[ {z,~(3/ (2*Pi)] * E:Ip[-19*z"2 / 8] / (2* (0.001+E:Ip(-2* z"2] / (2*Pi) » }, {z, -10, 10,O.25}] Duoc2:Xffpxl b5ngnQisuydailiac: V12=Itd~'~m['l1 Xell1 dathucv221a'xa'pxi cuav2[z]. Duoc3:Bie'"nd6i Fourierng\J9chamv22,tadH<;1cnghi~m 47 ChU(!11g4:Phu(!11gphdp ehlnhhoaphu(!11gtrinh tfeheh(ip chInhh6a: vOO[x-.-J:'"~ar:m[v22[z] , Z, x] Bi~udi~ndBthicua nghi~mchinhxacvanghi~mchInhh6a((ngvdithams6 chInhh6aa =0,0.01trenclIngh~tn:lct9ade>: P.lct[ (VOO[)(],~[Jq}, {X,-2.5, 2.5}] / /' /' / 1. 5 // / // // ,IT-'-''''~'--,, /,/ // ,/' /' ,/ -,~" ,/ ,-,--"~/ --- "'-. 0.5 ""' ,,---,.. '-"-"'- " ..::.::::::=---'::::-"-- 21-2 '-I Choa =0,0001,tadIng HmduQcnghi~mchinhh6atlidng((ng. SosanhdBthinghi~mchinhh6avdidBthicuacaenghi~mchlnhh6a ((ngcae tham55chinhh6a khacnhau: a=1/l000,a=1/l0000 trenclingme>t h~tr~lct9adO. ./' " / " / ,.-2 '" " "// ',,' . \ // "\ {I I . .1:_" '\\;/ " ~ '/ ,\// ~'- \ / / / 0.5 .~ \\ //; // ". \'-. /' // /",/ ' , "", .~<' ...:::::?~- - -2 -1 1 2" 48 Chuang4:P/u(rfngphdpchlnhhoaphllrfngtrinhrichch(ip 11.801toClnnhl,t trong16khoanthdmdo. XIStu(1,t)=vO(t)Ia ham dtf<;1Cxac dinh nhlf sail: vO[t:J :=ItSJ:t[l+t"2] Theocongth((c(3.22)tau(1,t)=uO(t): UJ[t.J :=-l/Sqrt[l+ t"2] 1 1+t2 (Sais6dotinhgftndungb~ngchlfongtrinhMapple- Mathematicakhongtinh tr1,fcliSp dlf<;1c). Nhuv~y,vO(t)du<;1Cxemla nghi~mchinhxac((ngvdi dil ki~nchinhxacuO(t). BiSn d6i FouriercuauO(t): u2[z_J :.. fu.u::ieJ:'l':ransfonn[uO[tJ, t, zJ -J-~ BesselK[O, zSign[z]] Lien h<;1pcuaFouriercuanhflllK2(t): k22[Z_J :.. (1/ Sqrt[2",PiJ) '" E1!p[-Sqrt[1'Ibs[zJ/2J +I", Sqrt[1'Ibs[zJ/2]] e (l-i)~JlbslZJ /2 ~-- ./2 7T BlnhphuongmoduncuaFouriercuanhanK2(t): k23[z_J :=(1/ (2",Pi» "'E1!p[-Sqrt[2*1'Ibs[z]]J e-/2 ~ JIbs!z) 27T 49 ChltrJng4:PhltrJngphdpehlnhh6aphltrJngtrinhtiehehi)p Choa =0,001.Tacobie"nd6iFouriercuanghi~mchlnhhoavOO(t): v2[z.J :. k22[Z]*u2[z]/ (0.001 +k23[z]) e (I-i) ..}JIbs[Z] ..}2 BesselK[O, z Sign [z]] ( -..}2..}Jlbsrzl1 0.001 + e 2 IT ) 7T VI khongth~IffyFourierngtf'1ctrtf'1ctie"ph~llnv2(z),tadungxffpXldathli'c trttdckhi IffyFourierngtf<;1c: Booe1:T~obangghitris5cuahamv2(z): T:= Table[v2[z], {Z,0, 5, O.25}] Btio~2:XffpXlblingnQisuydathli'c: v22[z.J :=Inteqcl.aticn[T] Xemdath((cv22[z]IaxffpXlcuav2[z]. Booe3:Bie"nd6i Fourierngtf'1ccuahamv22[z]: vOO[t_]:=Inver:seE'rorier:TJ:ansfonn[v2[z]I z, t] tadu"1Cnghi~mchinhhoa: -~InverseFourierTranSfonn[7T (1+1) ..}~ 1000.e ..}2 BesselK[ 0, z Sign [z] ] ], z, t 159.155+1. e..}2..}lbsl~; Sosanhd6thjnghi~mchinhxacvanghi~mchinhhoali'ngvdithallis5chinhhoa a =0,001trencungmQth~tr\lCto~dQ: 50 ChllrJng4:PhllrJrlgphdp chinh hoaphllrJngtrinh rich ch(1p 1 ~~ ",,-, 0 . A I- -" " --"'------- -.. - -------........---- 1 . 2 0 . 6 0 . 4 0 . 2 --' nu -- -.. ~-~ -----..-- - - - 2 3 .s

Các file đính kèm theo tài liệu này:

  • pdf8.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf5.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf9.pdf
  • pdf10.pdf