ĐÁNH GIÁ CHO CÁC PHÉP BIẾN HÌNH K-Á BẢO GIÁC NHỮNG MIỀN CHỨA TRONG HÌNH VÀNH KHĂN
TRẦN TRƯƠNG NGỌC BÍCH
Trang nhan đề
Mục lục
Chương1: Đặt vấn đề và ký hiệu.
Chương2: Các công cụ.
Chương3: Các đánh giá cho lớp F.
Chương4: Kết luận.
Tài liệu tham khảo
19 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1982 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Luận văn Đánh giá cho các phép biến hình K-Á bảo giác những miền chứa trong hình vành khăn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
3.Caedanhgia eholapF
3.1Danh gia q{f)
D!nh Iy 3.1:
Gia saAla hinhvanhkhanQ<Izl<1 bj cat thee p nhat dc;mg(1.1)
co thebi~nbaagiacboih IEmhinhvanhkhanqo<ItI<1 bj cat"theop nhat
dQc cac tia ban krnhsac cho cac duangtrim Izl=Q,Izl=1tudngung voi
It1= q0' It1= 1va diem z = 1 tudngungvoi t = 1. Khi do, voi cac ky hi~uaph~n
1 ta co
(3.1)
1
q:;~q(f) ~QK ,Vf E F.
Hdn nOa,
K IIK-lq(f)=qo f(z)=g[h(z)],ZEA,g(t)=tt ,
~ 11
q(f) =Q K fez)= zlzlT ,z E A.
Chung minh
1
~.
~zOQ 11
~
Hinh 9
Ap dl:lngh~qua2.4cho f E F , taco :
2 2
77:q2~ trQK - S(f{;)K
~.
BwOq
CJ
1
1
~ q ~QK .
1
COngthee h~qua 2.4, q=QK fez) = azlzlt-l ,\aJ=1.
21
Nhungvoi f E Fta co f(1) =1nen =>fez) = Z\Zlt-l.
Vi f.h-1la PBHK-ABG mi~nBo=h(A)lenmi~nB =f(A) nenap
dl;lngbed~2.9taco :
! S
(
~
)
K ~ q "? q(;,vf E F ,
q qo
voi q =q(; ~ f.h-1(t) =atltt-1=ag(t), tUc fez) =ag[h(zj] .
Do f(1 )=1nen ta da chungminhxong (3.1).
3.2Danhgia di~ntich:
D!nh Iy 3.2:
Voi cac kr hi~u
O<Q<R<l;O<Q<r<l,VfEF, ta co:
da gioi thi~u, \fR thoa
(3.3)
s(f) ~ s(r,f)'; nrY.[I- ;~J '
S(B)~1llI'[Q~ -I}
(3.2)
(3.4)
2
(
R
)
K 2
TCq2 Q sS(R,f) S TCRK.
1
Dc1ngthuc(3.2),(3.3)va (3.4)xayra~ fez)=zlzlt-lhay q= QK .
Chung minh
* Ap dl;lngbe d~2.8, ta co :
2 2
,,~trq2(~r +S(f)(~Y ,
Suy ra (3.2).
22
D~ngthuGxayra~ fez)=az!zlt-I, al=1.
Dof(1)=1nena=1=>fez)=zlzlt-I.
* Do(3.2)taco: S(B)=ff(1-q2)-s(f),
",,(I-Q2)-[ nr%(l- ~H.
Vi r <1 nenguyra(3.3).
Tudngtl!:d~ngthuGxayraa (3.3)~ fez) =zlzlt-I.
* Xet Al =A (J {z:IziR .
Ap dl)ngbe>de2.7hoc;ic2.8cho f E F I~nluQtlenmienA1va A2'ta
co:
2
S(R,f);' nq'(~r'
2
ff ~S(R,f{~)K.
=>
2
S(R,f) 5, ffRK .
TCtdoguyrabatd~ngthUGkep(3.4).
I
D~ngthuGxayra ~ q=QK.
3.3C~ntrencho m(R,f)vac~nduoicho M(R,f).
£)!nhIy 3.3:
a)Voi cackrhi~uda neu,V R, Q<R<1,VfEF, taco :
(3.5)
I
m(R,f)5,RK ,
23
(3.6)
I
M(R,f);" q(~r .
Dlingthucxayra0 (3.5)ho~c(3.6) ~ f(z) =zlzlt-I.
b) HemnO'a,n~u Q <R <r ho~ctudng ung r <R <1 thi ta con co cac
danh gia sac hdn :
(3.7)
m(R,.n"q(~r ho,,"ctllongling
(3.8) M(R,f)~RK .
Dlingthucxay ra 0 (3.7)ho~c(3.8)~ f(z) =zlzlK-I .
Chungminh
a)D~t AI =An{z:lzl>R},A2=An{z:lzl<R},
Bj =f(A),j =1,2;feF,Q <R<1,
mj =min~rt1:we Ej },Mj=max~rt1:we Ej },j=1,2,
Ej la thanhph~nbi€mcua Bj tudngung voi duongtron
Izi =R (n~uR:;t:rthi ro rang E1 =E2).
Ta co:E(R,f) = EI U E2 da neutrongph~n1
Khido, VfeF,VR:Q<R<1, taco:
(3.5a) m(R,f) ~mj,M(R,f) ~Mj,j =1,2
Ap dl:lngh~qua2.5choPBH f e F tren mi~nAI,VR,Q <R <1,ta co :
(3.5b)
2 2m -
1> 1--->.. 2 <RK_~-;ml - ,
RK
Tu (3.5a)va (3.5b)suyra(3.5).
24
Ap dl:lngtucmgWcho1E F mi~nA2ta co :
(3.6a)
2
(
R
)
K
2 2 2> 2- ,
M2 ';?~=:;.M2 -q Q2 -
RK QK
TCt(3.5a)va (3.6a)ta chungminhdUc;1c(3.6).
D~ngthuGxayra0 (3.5)hoc)c(3.6)~ fez) =azlzlt-l.
I
Do /(1) =1=>a =1tUGfez) =zlzlK-l.
b)N~uQ<R<r thiB2la mi~nnhi lienva 1 PBHBG h bi~nB21enhinh
vanh khan B;: q<ItI<r .
Dotfnhddndi~ucuamodunnen
(3.7a) m2 ~r.
, I '
Ap dl:lngbe de 2.6 cho PBHK-ABG h.f ta dUc;1c:
(3.7b)
~~
(
R
)
K
q Q ,
~r~q(~r
Do (3.5a),(3.7a)va (3.7b)nenguyra(3.7).
D~ngthuG0(3.7)xayra~ (3.7a)va(3.7b)xayrad~ngthuG,
{
hew)=aw,lal=1~
II
K-l
hf(z)=bzz
II
K-l b
II
K-l
=> af(z)=bzz =>f(z)=-zz .
a
Do 1 (1)=1 nen E.= 1.
a
V~yd~ngthuGxayra~ fez) =zlzlK-l.
25
TUC1ng W voi r<R<1ta S8 chungminhdu<;jcdanhgia (3.8)cung
k~tlu~nv~truongh<;jpxayrad~ngthuc.
3.4. C~ntren cho M(R,f)VaD(f), c~ndooi cho m(R,f)va danh
gia If(z)l.
Dinh Ii 3.4:
Voi caekrhi~udaneu,'v'R:Q<R<1,'v'fEF,tac6:
(3.9) M(R,f) ~u <...<Uj <Uj-l <...<Ul <1I
(3.10) m(R,f)~V>...>Vj >Vj-l >",>Vl >q.
Voi:
~ q
u,~T(p,R',q),v,=+Ht',q]'
ui =T(p,R!ic,vi-')'Vi=+.(~)!ic, U~-,r~2,3,...,
U =U(K,p,Q,R,q)= limuj'J~'"
V =V(K,p,Q,R,q) =limvj"J~'"
Chungminh
Xet AI =A!1~zlR},BI=f(AI),Bz=j(Az).
GQi r~ va r~ la bien cua 81va 82tUC1ngung voi bien Izi = R cua A1
va A21
M'(R,f) =max~wl:wE r~},m'(R,f) =min~~:wE r~},
MIt(R,f)=max~~:wEr~},mlt(R,f)=min~wl:w E r~}.
Khi d6 ta c6 :
m(R,f) >q,M(R,f) <1,M'(R,f) ~M(R,f),
mlt(R,f)~m(R,f),MIt(R,f) =M(R,f),m'(R,f) =m(R,f).
26
XetPBH f mi~nA21emB2vatheobed~2.10,taco:
M"(R,f):$;T(P,RYK,mil).
DoUnhddndi~u3 cuahamT va m" >q nen:
(3.9a) M(R,f) =M"(R,f) <T(p,RYK,m")<T(p,RYK,q)=Ul' "
XetPBHf mi~nA1lenB1va theobed~2.11,taco :
q .m'(R,f)?
[ (
Q
)
YK ~
]T p, R 'M
DoUnhddndi~ucuahamT va ~ >q nen
M
(3.10a) q q =v,'
m(R,f)~m'(R,f)~ TH~t',~r+Ht',q]
Gia sa (3.9a) va (3.10a) dung cho UjVa Vj Wc M(R,f)<uj va
m(R,f) >Vj' ta S8 chung minhchungcOngdungcho Uj+l vaVj+l'
Th~tv~ydoUnhddndi~ucuahamT va m"(R,f)?m(R,f»Vj taco
"
f) YK ") T( RYK ) ( R ~ )M(R,f)=M (R, :$;T(p,R ,m < p, ,m <T p, ,Vj =Uj+l'
Tvdng tv, cOng doUnhddndieucua va L>!L>!L taco
. . M' M u.
]
q q > q =Vj+1"m(R,f)=m'(R,f)?
[ (
Q
)
YK L
]
>
[ (
Q
)
YK,!L
]
T
[
P,(Q)YK,!L]T p, - , , T p, R M R UjR M
V~yta da chung minh: M(R,f) Vj'vi.
27
Tu tfnhddndi~ucua hamT, voi UI q lam khoi diem, ta de
dangthg.yUj la daygiamva bj ch~nduoiboi M(R,f), vi la daytangva bj
ch~ntrEmboi m(R,f). Dodot6nt9icacgioih9n
U = limuj'V = limvj'
j-->oo ]-->00
Dodo taco cacdanhgia(3.9),(3.10).
H~qua3.1:
\:IR, Q<R<1,\:IfEF, ta co:
(3.11)
(3.12)
M(R, f) <T(p,RJiK,0)
q
m(R,f) >
[
1
](
Q
)
JiK
T p, R ,0
ChtJy: Sau nay(xemh~qua3.7)ta S8chi racac c~ntrongh~qua
naylat6tnhg.trongs6 cacc~nphl;Jthu(>cungcacd9iluc;mg.
H~qua3.2 :
Voi cacgiathi~tda neu,taco :
M(R,f) <4x'RJiK,
h
(
R
)
JiK
m(R,f) >4 Pq Q .
(3.13)
(3.14)
Cac h~s6 0v~phailat6tnhg.trongs6 cac h~s6 chiphl;Jthu(>cp.
Chungminh
Do (3.11)va tfnhchg.t6 cuahamT (xem2.1.2c) taco (3.13).
TudngWtU(3.12)vatfnhchg.t6 cuahamT suyra (3.14).
Do tfnhchg.t7 cua hamT nen limT(~/,O)=1va do chuycuah~
r-->O 4 P r
qua3.1tathg.ycach~s6tronghaidanhgianaylat6tnhg.t. .
28
H~qua3.3:
Vaicackyhi~udaneuaphfIn1,theeb~td~ngthuctamgiacta
co:
D(f):::;2M(r,f),vf EF.
D~ngthuccothexayravaip= 2 (xemchungminhdinhIy3.7).
TCldo,do (3.9),taco:
D(f) <2T(p,rI/K,q), vf E F
ho~cnho(3.11)va(3.13),taco:
(3.15)
(3.15a)
D(f) <2T(p,rI/K,0),
D(f) <2.41!prl!K,Vf E F.
Vaip=2h~56trongdanhgiacu6iclInglat6tnh~t.
H~qua3.4:
Vi m(R,f):::;If(z)1:::;M(R,f)vaiR =IzI,zE A,
NentheedinhIy3.4taco:
q
T
(
P,
(
Q
J
l!K
J
<If(z)! <T(p,lzI1!K,q),
Izl ,q
Ho~ctheeh~qua3.2taco
(3.16)
4:y'q(l~t <I/(z)1<4Y.olzlY.c.
Cach~56trongdanhgianaylat6tnh~t..
29
3.5.BAtphudngtrinh chinh
Trangml;jc naytaS8apdl:mgIythuy~tdQdaiclJc tridagiaithi~utrang
ph~n2.1.3vabed~2.12dethi~tI~pcacb~tphudngtrinhchfnhrangbuQc
h~uh~tcacd9iIu(,jngd~ctrungchomi~ng6cvami~nanh.
D!nh Iy 3.5:
Vai cackyhi~uvagiathi~trangph~n1, vf E F ta co:
ff- ap 1 ff- ap c ap 1 1-In2 -+ In2-+-In2 -::; Kffln-.
In! d In~ q Inl q q
r Q Q
(3.17)
ff - ap 2 ff - ap 2 ap 2 Kff 2
~ (1- d) + 1 (c- q) +1 (1- q) ::;2 (1- q ).In- In- In-
r Q Q
(3.18)
Chung minh
""'" Sj .'.
...~.........
A .
(8)
""""'" J "" S ".
...::::>.::::::: J
z , """"""""
,,"""""~"""' ,
H. 1
\. 'J i
30
0 In; c:J I R". IInIn;
{;-a J {: -aJ 2a
Hinh10
Goi:
+ S} latUgiacGongnamtrongA gioihc;lnboi Izi=1,Izl=r,
. 2TC .2TC
argz =a +(j -1)-,argz =-a+ J-.
p P
+ S') la tUgiacGongnamtrongA gioih(~mboi Izi=r,lzr=Q,
argz=a +(j -1)( 2; Jargz ~-a +je;)j =1,2, ,p.
+S"}latUgiacGOngnamtrongA gioih(~mboi Izi=1,Izi=Q,
. (
2TC
J
.
(
2TC
Jargz = -a +(j - 1) P ,argz =a +(j - 1) P .
PBH Vf E F bi~nmi~nA lenmi~nB, khido :
+S}trothanhH} co mQtc9nh namtren I~=1va mQtc9nh
namtrenQ'j.
+S~tro thanhH'}co mQtc9nh namtren Iwl=qva mQtc9nh
nam trenQ'j .
+S;tro thanh H}" co mQtc9nhnamtrenI~=1va mQtc9nh
namtrenI~=q .
T6n t9i cac PHBHBG trongdo cac dinh CU8tUgiac Gongthanh
dinh hinhchOnh<;1t
+ h,bi~ns)en hinhchi]nhi;ltR c(lnh{; -a)vaIn!: sac
choc<;Inhnamtren[zl ~ 1lingVO;C<;Inh{; -a l
31
+h, bi~nS;len hinhchu nh~tR' C<lnhz(; -a )vaIn ~ sac
choe<;InhnamtrenIzl =Q(Jngvo;c(lnh2(;-a).
+h3 bi~n Sj':len hinhchOnhatR" canh 2a va In~sao cho
.. {2
c~mhnam tren Izi = 1ung voi cc;mh2a.
Dodo:
+ PBH g1tU Hj len R co the xem la hQpcua PBHK-ABG r1
va PBHBG h1.Vi v~y,gl = h1.f-1 la PBH K-ABG .
+g2 = h2.f-1 : PBHK-ABGtUH'jlenR'.
+ g3=h3.f-1: PBHK-ABG tU H"j len R".
Viv~y,apdl;Jngbod~2.12voi P(W)=I~IVOiWEHj taco:
Sp(Hj) "2(;-~ J [ fP(W)ld~J ' =2(;-~J ( fldWIJ
2.
KIn- r KIn- r I~
r r
Vi w=tehp nen Idwl=leiq>dt+iteiq>dtl=leiq>lldt+itdtl=ldt+itdtl=~(dt)2+(tdq»2
~.Idtl.
~ I~I;, I~I ,
Suyra:Sp(H)? 2(~-~] ( fdtJ
' ~ {~-at~.
KIn- d t KIn.!. d
r r
32
(
ff
J
2 --a
Tuong tlJ: Sp(H'j);::: P r In2,:" Sp(H"j);::: 2a1 In2!.
KIn- q KIn- q
Q Q
M~tkhac:
, " 1
pSp(H) +pSp(H) +pSp(Hj):::;2ffln-.
. q
Dodo taco batcitIngthuc(3.17).
N~ufez) =zlzlK-l thic = d =rKvaq=QKnencitIngthucxayra.
Lylu~ntuongtlJtrennhungvaipew)=1,WedQdo Euclide,tachung
minhdU9c(3.18).
3.6Dimhgiac(f)vad(f).
Vi d(f):::;M(r,f)va e(f);:::m(r,f)vai f EFnen c~ntrencuad(f) va
c~nduaicuac(f)cothelaytCtdinhIy3.4vacaeh~quacuano.Trangph~n
naytachixaydl!ngc~nduaicuad(f)vac~ntrencuac(f).
H~qua3.5:
Vaicaekyhi~uvagiathi~ttrangph~n1,Vf E F, taco:
(3.19)
~ (kff ap Jdel) >qVff-ap Inq-lnQ ,
(3.20) e(f) V 1:~§J(
Kff-~
J
q(f) <q ap Inq lnQ .
Chungminh
a) Tv (3.17)suyra:
1 1 1
ff -ap In2- + ap In2- <Kffin-,
In! d Inl q q
r Q
33
~1
I
2 1In-;
I
Kff - ap In -,
21.-< 1 1 q
In d 7r-ap In- In Qq
~
~
(
KTC ap
)
d >qVTC-ap Inq-InQ
GOngtU(3.17)suyra:
ff-ap 2C ap 21 1-In -+-In -<Kffin-,
In~ q Inl q q
Q Q
~
r
In-
In2~< Q
I
Kff - ap
I
In2l,
q ff-ap Inl Inl q
q Q
In~
C -.iL (KTC - ap )
- <qV TC-ap Inq InQ
q
~
Ta thflyk~tquathuduc;1Ca(3.19)va (3.20)c6nhuc;1cdiemlacacc~n
cuad va ~ deuphl,JthuQcvaoq lad<;liluc;1ngchuabi~t.BaygiGta c6the
q
khacphl,Jcdieud6nhobode2.4boi:
£)!nhIy 3.6:
Voicacgiathi~tvakyhi~unhua ph~n1,Vf E F, tac6:
(3.21)
Kp1l:
del) >r1l:-ap,
(3.22)
Kp1l:
:~ «~t~.
34
Chungminh
". S
....
~ ""
A
zO° B Oq
~--------
Hinh11
GQi Sj 113tU giac Gong gioi h9n bai
27r .27r
Izl=1,lzl =r,argz =a+(j -l)-,argz =-a+ J-.
p p
1
S"
t
O
J >
\J"- . S J1
PBHK-ABGVf E F biE§nSj IEmS'j 113tU giac Gong co m(>tc9nh nam
tren lui=1va m(>tc9nh namtrenQ'j.
PBHBG h biE§nmi~nnhjliengioih9nbai lui =1 va Q'j lenhinhvanh
khans <ItI<1 sao cho lui=1 tuongung voi ItI=1.Tu giac Gong S'j tra thanh
S"j 113daibangco haic9nhnamtren ItI=1 va It\=s.
Nhuv~yt6nt9iPBHK-ABG h.f biE§nmi~nSjlenS"j.
TheadinhnghiaPBHK-ABGtaco:
1 "
-m(S.):::; m(S).
K } }(3.21a)
Do bed~2.4taco:
(3.21b) m(S):::; 27r1 .
In-
s
M<1itkhac
35
(3.21c)
2
(
ff a
J
m(Sj) = P 1 '
In-
r
Ket h<;1p(3.21a),(3.21b)va(3.21c)taco:
ff
--a
P ff-<-
I - l'
Kln- In-
r s
~ In! ~ Kpff In!.
S ff-ap r
Mc;itkhacdotinhddndi~ucuamodunmi~nnhilientaco
1 1
-<-,
d s
Tv dosuyra lnl < Kpff In!,
d ff-ap r
V~ytaco (3.21).
Lylu~ntudngtl!taco (3.22).
H~qua 3.6:
Neu a =canst, dc;itC = Kpff , cho 1-r= & ~ 0 thi thee (3.21)taco
ff-ap
(3.23)
c c
1-d ::JC& khi & ~ 0
Tudngtu neua =canst,datC = Kpff vacho! -1=& ~ 0
. . ff-ap Q
Tv(3.22) taco:
(3.24) : -l«~r -1=(1+£)c-1~C& khi &40
Cac danhgia (3.23)va (3.24)lat6iuuv~b~cIanh~s6.
36
Th~tv~y,n~ulay p=1,ex~ 0 thi haidanh gia naytro thanh
1-d<K(1-r)+o(1-r) khi r~l,
c
(
r
J [
r
J
. r
q -1 <K Q -1 +0 Q -1 khl Q ~ 1.
Trangkhidon~uxetPBH w= zlzIK-l(E F) thide dang thay c=d=rK,
q=QK. TCtdo
1-d=1-rK =l-[l-(l-r)r ~K(l-r) khi r~l,
~-l=(;r-1~[1+(;-1)r-l~K(;-l) khi ;-+1. .
De chiratfnht6iuucuacacdanhgiachaboidinhIy 3.4 va cach~
quacuanotaS8chungminhbod~sau
86 d~3.1:
Ton t9i [, E F va r E (Q,l)sac chavaicackyhi~uquenthuQctaco:
(3.25) d(r,fo)=r(p,rl!K,Ji) ,
(3.26)
c(r,fo) =r(p,r~K,-fi) .
.........--.............:A ..' ...
(OQ)r Ii
'\" ,.""
~
ChQn r =.JQ E (Q,l).
Chung minh
HInf1 2
:1-
5
1
.......
i 0')/1
"'1//
1 ,
Xet PBHK-ABG t=h(z)=zlzlTl bien A thanh A' la hinh vanh khan
Q~ <ItI<1 vai p nhatcat d9ng
37
ii' -
{
'
11
- h. ( '- 1)21r <- ,21r '- 12
}~l.- t,t-r ,a+} 5:argt- a+} ,}-"...,p.1 P P
T6n t<;liduy nh~tPBHBG W=g(t)bi~nA' thanh B la hinh vanh khan
q e ban kfnh
{
21r
}Lj = w:c5:lwl5:d;argw=--f;j=1,2,..,p;q<c<d<1 sac eho Itl=l tuong ung
I~=1 va Q'j tuongung Li"
Vi r=& nen ~* r =l.Q* .
, 1
V~yA' W d6i xung quaduongtrim ItI=rK ,
Vi B eOng W d6i xung qua duong trim I~=..rq nen
cd =(..rqY=q.
Theo nguyenIy d6i xung va tfnheh~teua PBH hinh vanh khan
rh <It\<1 phai duQe9 bi~nbaa giae len hinh vanh khan ..rq<I~<1 v6i p
nhatcatdQCbankinh Lj ~ {w;,{qos;H,; d,argw ~ 2:oj ~ I,...P}.
N~udc%lt[, =g.h thi theedinh nghia hamT(p,r.s) ta co (3.25),
Do c =!I tanhElndude(3.26).
d ' ,
H~qua 3.7:
Cae e~neua cae danh gia (3.11),(3.12) va (3.15) v6i p=2 la t6t nh~t
trongs6 cae e~nphl,lthuQeeungthams6.
Th~tv~y,tru6eh~tta ehOyrangtheechungminhtrenanheuaeung
C(a)={z/z=rei<fJ,-as;qJ5:aboi w=fo(z) laeung
C'(a) ~ {WIw ~ [ie",- ; <;<p<;; }
38
Vi v~yn~uc6djnhQ= r2 vachoa ~ 0,WccungC(a) co v~diemz =r
thi anh C'(a) cua no cOngphai thuv~mQtdiem,Wc q ~ O.Tu do n~uchQn
1=10vaR =r =&=consthitheo(3.11)va(3.25)taco
r(p,rl/K,Jq)= d(r,fo) =M(r,fo) <r(p,rl/K,O).
=> limM(r,j~) =r(p,rl/K,O).a~O
TudngW,theo(3.12)va (3.26)taco
q
[ (
Q
)
1/K
]
<m(r,fo) =c(r,fo) =T[ q
T p, -;: ,0 T p,rVK,~].
=> r m(r,fo)- 1
al.To q -r[p,rl/K,O]
39