NGHIỆM MỘT SỐ BÀI TOÁN UỐN TẤM NHIỀU LỚP
KIỀU TRÍ THỊNH
Trang nhan đề
Mục lục
Bảng ký hiệu
Mở đầu
Chương1: Nghiệm yếu của bài toán I.
Chương2: Nghiệm yếu của bài toàn II.
Kết luận
Phụ lục
Tài liệu tham khảo
23 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2198 | Lượt tải: 0
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiệm một số bài toán uốn tấm nhiều lớp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ChlidDg1
Nghi~mye'ucuabai toaDI
Trongchudngnay,bai loanI du<jcphatbiSuduaid~ngbie"nphanb~ng
cachduavaokhonggianhamthichh<jp.Sv t6nt~iva duynhfftnghi~rn
cuabai loanbie"nphan(nghi~rnye"ucuabai loanI) du<jchungrninh.Cu6i
clingla ke"tquavS tinhtrdncuanghi~rn.
1.1 Phat biiu bie'nphan
Duavaokhonggianham
{
I 2 8v 8v A
}V = v I v E HonH ,ax=8y=0trenr .
TrenV tatrangbi tichvahuang
(18)
r 82u82v r 82u 82v r 82u82v r
(u,v)v= in ax28x2dx+in 8xay8x8ydx+in 8y28y2dx+in uvdx(19)
vairnQiu,v E V. Tichvahuangnaysinhrachuftn
Ilvllv= J(v, v)v (20)
vai v E V. Lu'uy, doV C H2nentrongV tacochuftncarnsinhtuchuftn
trohgH2, xacdinhbdi
1 (
82 2 82 2 82 2
)Ilvll1-2 = n 8x~ + 8x;y + 8Y~ +I \l vl2+Ivl2 dx.
Ch. 1Nghi?mytu cilahili toanI 17
M~nhd'e3. TrangkhanggianV, chudn(20)va chuilntheaH2 ia tl1(jflg
dl1(jflg.
Changminh.Hi~nnhienta co
Ilvll~<Ilvll~2'
M~tkhac,apd\!ngba'td~ngthuc(14),ta co
(21)
(
02 2 02 2
)
II\7v1112<2C 0 ~ + 0 ~ . <2Cllvll~,
. x L2 y L2
suyra
(
02 2 02 2
)
02 2
Ilvll~2 < (1+2C) 0 ~ + 0 ~ + 0; +IIvll12x L2 y L2 X Y L2
< (1+2C)llvll~. (22)
Tli cacba'td~ngthuc(21),(22)tanh~nduqcdi~uphiiichungminh. 0
M~nhd'e4. V ia khanggianHilberttachdl1f/Cvdi tichvahl1dng(19).
Changminh.Ta chungminh V Ia kh6nggian con dongtrongH2 nHJ.
Cho {vn}Ia day trong V sao cho Vn ---+V trong H2 nHJ- Ta chung
minhdingv E V.
Vi c;;E HI vac;; =0I r nell,theodinh19vSt,t6nt£;liffiQth~ngs6
C > 0 (ph\!thuQc[2)saocho
ov
oxIIP(r)
ovn- ov <C ovn- OV
ox ox L2(r)- ox ox"Hl
(
02vn 02v 2 02Vn< C --- +-
OX2 OX2 L2 oxoy
2 112OV
oxoy liP
2
)
OVn OV ---+0;
+ II ox - ox L2
Ch. 1 Nghi?mytu Gilabili loan I 19
Tim w E V thoa
a(w,v) = .Infvdx (27)
voi mQiv E V.
1.2 811fon t~iva duynha'tnghi~m
Dinh Iy 1. V6'if E L2 thlhili loanI conghi?mytu duynh({tw E V.
Changminh.Tli congthuc(26),voi mQiw,v E V, ta c6
fpw 02v 02w 02v
la(w,v)1 < Dnllox2. £2 Ox2 £2+2D12 8xoy £2 oxoy11£2
02W 02v
+ D22118y2 £2 oy211£2
( )
1/2
02w 2 02w 2 02w 2
<M-+ +-
ox2 £2 oxoy £2 oy2 £2
(
02v 2 02v 2 02v 2
)
1/2
X - + + -
Ox2 £2 oxoy £2 oy2 £2
< Mllwllvllvllv,
trongd6 M =max{Dn,2D12,D22}.Do d6, d~ngsongtuytn tinha(-,.)
lien t\lCtrenV.
Ch. 1Nghi?myeuGuahili loanI 20
Clingtu congthuc(26),voi ffiQiv E V, taco
a2v 2 a2v 2 a2v 112
a(v,v) = Dn II a2 +2D12aa +D22 a 2x £2 x Y £2 Y II£2
(
a2v 2 a2v 2 a2v 2
)>m~+ +2'ax £2 axay £2 ay £2
trongdo m =ffiin{D11,2D12,D22}.
Tu bfftd~ngthuc(13),tad€ dangsuyra
(
2 2 a2 2 a2v 2
)
av v
2 2 + + 2 .
Ilvll£2<2C ax2 £2 axay £2 ay £2
Nhu'v~y,
2 2 2
)
a2 2 a2v a v
2 v + - .
Ilvll~< (2C +1)( ox2 L' + oxoy L' fJy2 £2
(28)
Voi 0: =m/(2C2+1)thl
a(v,v) > o:llvll~
voi ffiQiv E V. f)i~unaychungto d~ngsongtuye'ntinha(.,.) Ia khangtu.
Do f E L2 va
1fvdx <IlfllL'IIVIIL' <IlfllL'llvllv
voi ffiQiv E v, Dend~ngtuye'ntinh (f, .), dinhbdi
(f,v)=.k fvdx
Ch. 1Nghi~mytucuabili toanI 21
vdi mQiu E V, lien tl}ctrenV.
Vdi cactinhchffttren,nhaDinh19Lax - Milgram,tacodi~uphai
chungminh. D
1.3 Tinh trdn cuanghi~mye'u
Gia sli'w la nghit:;mcuabaitoaD1.Trongml}cnay,chungt6ikhaosattinh
troncuanghit:;mye'umaslft6ntc;tivaduynhfftnghit:;mdiiduQcchungminh
trongml}ctrudc.Ke'tquachinhduQcphatbiSutrongdinh19dudiday
Djnh Iy 2. Ntu f E L2 thl w E H4.
Changminh.Dlfa trenkhai nit:;mtl sai phan,chungminhcuadinh192
duQctie'nhanhHinluQtchocactruanghQpD =R2,D=R~vaDlat~p
mdbfftky.
A. Tnlifnghf/PD =R2
Lffyh E R2. Khi do,D+h =D. Trongphuongtrlnh(27)cuabaitoaD
I, Iffyu =D-hDhWE V. Ap dl}ngb6d~1,phuongtrlnhnh~nduQccothS
vie'tgQnlc;tila VT =VP. Taco
VT = Dn r 82DhW82DhWdx+2D12r 82DhW82DhWdx
}D 8x2 8x2 }D 8x8y 8x8y
+ D22r 82Dhw82Dhw
}D 8y2 8y2 dx
(
82Dh W 2 82Dh W 2 82Dh W 2
)>m 2 + + 2 '8x £2 8x8y £2 8y £2
(29)
trongdo m =min{Dn, 2D12,D22}.
Ch. 1 Nghi?mytu Gilabid loan I 22
DS danhgia VP, tadungbfftd~ngthae(14)
VP < IIfll£2I1D_hDhw\\£2
< Ilfll£211\7Dhwll£2
Tu (29),(30)ta sur ra
a2Dhw 2 82Dhw 2 82Dhw 2 2C
llfl1
2
a 2 + a a + a 2 < 2 £2.X £2 X Y £2 X £2 - m
Do f E £2ehotru'de,Den
a2D 2 a2D 2 a2D 2
hW hW hW <a 2 + aa + a2 - Const.,x £2 x Y £2 Y £2
sur ra
a2W a2w a2w
Dh~ ,Dh ,Dh- a 2ax £2 axay £2 y 11£2
bi eh~n.Theom~nhdS 1,WE H3.
Baygio,thayu =D-h(D-k(Dk(DhW)))E V trongphu'dngtrlnh(27).
Cupg ap d\lngb6 dS 1, phu'dngtrlnhnh~ndu'<;1eco thS vie'tgQnlc;tila
< V2CllfllL' ( /J2w 2 + /J2DhW 2 ) 1/2ax £2 ay2 £2
< V2Cllfllu ( fj2 w2 + ff2 Dhw 2 + ff2 DhW 2 ) 1/28x £2 axay ay2 (30)£2 £2
Ch. 1 Nghi?mye'ucuabili toanI 23
VT' =VP'. Taco
VT' = Dll r 82Dk(DhW)82Dk(DhW)
in 8x2 8X2 dx
+2D12r 82Dk(DhW)82Dk(DhW)dx
in 8x8y 8x8y
. D 1
82Dk(DhW)82Dk(DhW)d+ 22 8 2 8 2 Xn y Y
>
(
82Dk(DhW) 2 + 82Dk(DhW) 112
m 8x2 £2 8x8y liP
82Dk(DhW) 2
)+II 8y2 £2'
(31)
va
VP' < 11f11£21ID_h(D_k(Dk(Dhw)))11£2
< IlfllvllV'D_k(Dk(Dhw))11£2
< V2llfllv
[
82D~(~W) 2 + 82D..(~w) ,,2x V 8x8y 11£2
2
]
1/2
82Dk(DhW) . (32)
+II 8y2 £2
Tli (31), (32), ta sur fa
82Dk(DhW) 2 82Dk(DhW) 2 82Dk(DhW) 2 ~ llfI12.
8 2 + 8 8 + 8 2 <2 £2,X £2 X Y £2 Y £2 m
Ch. 1Nghi?mytucilahili loanI 24
nghlaIa
82Dk(DhW)
8x2 II£2 '
82Dk(DhW)
8x8y 11£2'
82Dk(DhW)
8y2 II£2
bi ch~n.Theam~nhd~1,WE H4([2).
B. TntiJnghtJp[2=R~={(x,y)E R2,Y>O}
ChQnh =(h,O)E R2,taco[2+h=[2.Lffyu=D-h(DhW) E V, thay
u vaa(27),danhgia tu'dngtl]'nhu'tru'ongh<jp[2=R2 ta du'<jcke'tqua
83w 83w 83w
8x3' 8x8y2' 8x28y E L2.
Baygio,voi h = (h,O),k = (k,O), Iffyu =D_h(D_k(DhW))) E V,
danhgia tu'dngtv nhu'tru'ongh<jp[2=R2 ta ding co
84W 84w 84w 2
-, 2 2' 8 3 EL.8X4 8x 8y x 8y
Nh " d~ kK h" J:: h" . h
84w 83w
L2 v '" coo bK
u'VC;ly,e et t uc, ta canc ling mIll 8y4' 8y3 E . 01U E c at
ky, tIT(27),saumQts6bie'nd6i taco
J
84w
1 1
84W
J
84w
D22 _8 4udx = fudx - Du 8 4udx - 2D12 8 28 2udx., 0 y 0 0 x OX y
Ch. 1Nghifmye'ucaahili toanI 25
Do d6
.k84w (
84w 84w
)
_
4udx < C _8 4 + 8 282 + IIIIIL2 IIullL2n Y X £2 X Y L2
< C/llull£2. (33)
f)~t
( 84w
Tu =in 8y4udx.
R5rang,T Ia anhx~tuye'ntinhlientt;letuC~(S1)vaoR (do(33)).Theo
djnh 19Riez, ta tlm dlt<;1cr E L2 sao cho r =~y~'nghlaJa ~:~E L2,
f){j' ki{j'm Ira ~:~E L2, ta vie't (27) dUdi dl).ng
{
(
8290 D128290
)
{ I
Dl1 in 8x2+ Dl18y2 udx = inI udx VuE V, (34)
{
(
8W8S D128w 8S
)
{ 1
in 8x8x +Dl1 8y8y dx = in 90sdx"IsE Ho, (35)
trongd6
82w D1282w E £2,- -+ 8 290 - 8x2 Dl1 Y
I I - I (
D12
D )
84w
L2- + - - 22 - E .
Dl1 8y4
Ch. 1Nghi?myeuGilahili loanI 26
DO"ivoi bai loanbie'nphan(35),sii'd1;lngke'tquav6 tinhchinhquy
cualoi giai ye'u(xemdinh19IX.25, [4], IT. 325),ta du'Qcw E HI. Con
voi bai loan(34),ne'udu'Qcvie'thilidu'oid<;tng
D 1 (
8908U DI28908U
)
d - 1 f
' d \.../ V.11 --+--- U x- u x vuE.
D 8x 8x Dn 8y 8y D
83W
Thl (dinh 19IX.25) go E HI, suy ra -8 3 E £2.. Y
Tom l<;ti,W E H4.
C. TntiJnghf/Pflingquat:D fa t(ipmdbfftTry
Cl. Danhgia hentrang(danhgia trent(ipQ cc D)
cO"dinht~pmaQ cc D, la'ymQt~pmaQ' saochoQ cc Q'cc D.
X6t hamch~tc1;lt~E Cgo(R2),0 <~<1 saocho
{
~-1
~=O
trenQ
trenR2- Q'
GQiv lamQthamba'tkythuQclopV(Q')la kh6nggianV voiDdu'Qcthay
baiQ' . Lucdo~vE V(Q')lahamnoirQngcuav rabellngoaiQ'vab~ng
0 bellngoaiQ'. B~ngcacph6ptinhdongiantaco
( 82(~w)82vdx = {
{
82w82(~v)+28~
[
8w82v- 82W8v
]}Q' 8X2 8x2 }Q' 8x2 8x2 8x 8x 8x2 8x28x
82
(
82~
)
82w82~
+ [8x2 w8x2 - 8x28x2]v}dx (36)
Ch. 1Nghi~mytu cuahili roanI 27
r 82(~w)82vdx - r
{
82w82(~v)+8~
[
8w 82v - 82w8v
] }
dx
JQ' 8x8y 8x8y JQ' 8x8y8x8y 8x 8y8x8y 8x8y8y
r
{
8~
[
8w 82v 82w8v
]+JQ' 8y 8x 8x8y - 8x8y8x
82 82~ 82w 82~
}+ [8x8y(w8x8y)- 8x8y8x8y]v dx(37)
r 82(~w)82vdx = r {82W82(~v)+28~[8w82v- 82W8v]JQ' 8y2 8y2 JQ' 8y2 8y2 8y 8y 8y2 8y28y
82 82~ 82w82~
+ [8y2(w8y2)- 8y28y2]v}dx
(38)
Bay gid, ta giai b~Liloan(27)trongt~pQt. Ta ki~mchungduQcding~w
thoab~Liloanbitn phansau
r " r
[
8w8~82v 8w 8
(
8~8V
) ]a(~w,v) = JQ,f vdx+2DnJQ, 8x8x8x2+8x8x 8x8x dx
2D r
[ (
8W8~ 8w8~
)
82v 8w 8
(
8~8V
)+ 12JQ, 8y8x +8x8y 8x8y+ 8y8x 8x8y
+8w~(
8~8V
) ]
dx
8x8y 8y8x
r
[
8w8~82v 8w 8
(
8~8V
) ]+2D22JQ, 8y8y8y2+ 8y8y 8y8y dx, (39)
Ch. 1Nghi~mytu cilahili roanI 28
voi ffiQiv E V (Q'),trongd6I" E £2(Q')va
" fj2 fJ2~ fJ2wfJ2~
I = I~+Dn [fJx2(wfJx2)- fJx2fJx2]
fJ2 fJ2~ fJ2w fJ2~
+2D12
[ (W ) - ]fJxfJy fJx8y fJxfJyfJxfJy
fJ2 fJ2~ fJ2wfJ2~
]+D22[fJy2(wfJy2) - fJy28y2 .
?
d daytadasad\lngcacc6ngth1i'c(36)- (38).
Voi V1 =Dh(~W)E V(Q')vaIhlkhabe.Lffyv =D-hV1thayv vao
(39).Dungb6 dS 1,phu'dngtrlnhnh~ndu'Qcvie'tgQnl(;lila VT =VP.
DanhgiaVP. Do~E cgo(R2)va~bi ch~nDen
IVP! < c {llrIUID-hV1L,+11&~~wt,(II~:;t, +II:~~~IU
+118~wt(II:;~IIL'+11~:2t,)}
< c {1If"IIL'IIVV111L'+Ilv~:IIL'(II~:;IlL'+II:~~~IU
+llv~;lljll:;~~IIL'+11~:2t,)}
1/2
(
fJ2V1
11
2
II
fJ2V1
11
2
Il
fJ2V1
11
2
)< C1 IIV'v111i2+II fJx2 £2 + 2 fJxfJy L2+ fJy2 L2
(
3 fJ2v 2 82v 2 3 fJ2v 2
)
1/2
< C1 IIv111i2+211 fJx2111L2+21IfJxfJ~IIL2 +211 fJy2111£2
< 2C1I1v11Iv(Q/)'
Ch. 1Nghi?mye'ucuabili toanI 29
vdi
(
8 2 8 2
)
1/2
C1 = Ilf"lli2+211~8: 11£2+211~8; 11£2 .
Ba'td~ngthuc cu6i cung thu du'Qcnha (14). Vi f" E £2,W E H2 DenCO
h~ngsO'C2 >0 saocho
v p < C21IDh(~w)IIV(Q')'
Danhgia VT. Do (28)
(40)
VT > m
(11
82Dh(~w)
11
2 +
11
82Dh(~W)
11
2 +
11
82Dh(~w)
11
2
)8x2 £2 8x8y £2 8y2 £2
> C31IDh(~w)II~(QI)' (41)
Tli (40),(41)va d~ngthucVT = VP , ta suyra
IIDh(~w)II~(QI)<CIIDh(~w)llv(Q')'
nghlala IIDh(~w)llv(Q/)bi ch~n,do Q cc Q' Den
IIDh(~w)IIV(Q)< IIDh(~w)llv(Q')
hay IIDh(~w)llv(Q)bi ch~n.
Ke'tquala
li
D 82(~w)
II li
D 82(~w)
II li
D 82(~w)
IIh 8x2 £2(Q)' h 8x8y £2(Q)' h 8y2 £2(Q)
bi ch~n.Ap d\lngb6d~1taco~wE H3(Q) .Vanhu'v~yw E H3(Q).
Chungminhtu'dngtvnhu'trenvdiv =D_k(D_hVl),VI=Dh(Dk(~w))
taclingchungminhdu'Qc
11D.(Dk8~~~)t"11D.(Dk8;~~:)t2'IIDh(Dk82~~~)t2
Ch. 1Nghi?mytucuabili loanI 30
bi ch~n.va nhu'v~ytheob6 d€ 1 tading du'QcWE H4(Q).
C2. Ddnhgid iJ fanc(incuabien
Tru'oche'ttaxettru'onghQpdongianSl Ia lllla quacffudonvi
Sl =B(0,1)nR~
D~tQ =B(O,1/2)nR~ tachQnhamch~tC\lt~E C;:O(R2),o<~<1 sao
cho
{
~=1
~=O
trenB(O,1/2)
trenR2- B(O,1)
Khi do~- 1trenQ va ~tri~tlieu tc;tigffnbiencuaSl. Vi W=odQctheo
du'ongth~ngy=° va~=° gffnbiencuaSlnen~wE V(Sl).
Voi VI E V(Sl),h >okhabe,Iffyh = (h,O),thayv =D-hVlva~w
vao(27),dungb6 d€ 1 taco
a(Dt.(~w),VI) = 1f" D-hVldx
2
(D 1 [
aWa~a2D-hVl aw a
(
a~aD-hVl
)]
d+ 11 -- +-- - x
n axax ax2 8x8x 8x 8x
D 1{
8w
[
8~82D_hVl 8
(
8~8D_hVl
)]+ 12 - - +- -n 8x ay 8x8y 8y 8y 8x
8w
[
a~82D_hVl 8
(
8~8D_hVl
)] }d+-- +-- x8y ax 8x8y 8x 8x 8y
+D22{
[
8w8~82D-hVl +8w~(8~ 8D_hVl)
]
dX
)(42)in 8y8y 8y2 8y8y 8y 8y
Danhgiatu'ongt\1'nhu'trongC1taco bfftd~ngthlic :
IIDh(~w)IIV(Q)<C
Ch. 1Nghi?mytu cuabili roanI 31
Voi vI E V(~), h,k > 0 khanho,d~th = (h,O),k= (k,O)thayV =
D_k(D_hVI) sau do thay VI = Dh(Dk(~w))ta cling chungminh du'Qc
IIDhDk(~w)llv(Q)bi ch~n.
Chungminhtu'dngtl!nhu'trongtru'onghQpB. (tru'onghQpR~)tacling
co du'Qcke'tquaw E H4(Q).
Baygiotaxettru'onghQp~t6ngquatcobieno~ trdnvathuOclopC2.
La'yba'tky (xo,Yo)E o~. Do b6 d~phanho~chddnvi, tant~imOtHinc~n
U cua(xo,Yo)vamOtsonganhtuhlnhtrollddnvi Q ={(x,y) : x2+y2 <I}
leDU
H : Q ---+ U, J =H-I : U ---+ Q
saocho
H E C2(Q), J E C2(U)
va
H(Q+)=Un~, H(Qo)=Unf.
Ky hi~u
Qo= {(x,y)E Q,y =a},Q+= {(x,y)E Q,y >a}.
Tavie't(YI,Y2)= J(x, y),(x,y)=H(yl,Y2).
ChQns >0khabesaochonii'ahlnhtrollU' =B(O,s)n{y> O}chua
trongQ+. D~tQ' = B(O,~)n {y>a}. La'yhamch~tc\lt~E Cr:(R2),0 <
~<1 saocho
~-g
trenB(O,~)
trenR2- B(O,s)
Khi do~- 1trenQ' va~tri~tlieu t~igffnbiencuaU'. Cu6i clingtadinh
nghla
w'=w 0 H, W'= (~w)0 H, v'=v0 H, 9 =iff 0 H.
Ta cow'E V(U').
, VI w =0 dQctheodu'ongthiingy = ° va~= 0 gffnbienU' Den
~wE V(U').
Ky hi~u
.._OYiOYj b.._OYiOYj .._OYiOYj
aI] - ox oX' I] - ox oy' cI] - oY oY .
Ch.1Nghifmye'ucaahili roanI 32
Vdi ffiQiv' E V(U'), thay~wvao(27)bi6nd6inhu'trong(42)tadu'Qc
VT =VP, trongdo
2
{ 1
a2w' a2v'
VT = L Dll aijakZa a a IJHldx
. .k Z=l U' Yi Yj Yk YzZ,J, ,
1
a2w' a2v'
+2D12 bijbkza a a a IJHIdxU' Yi Yj Yk Yz
1
a2w' a2v'
}+D22 CijCkZa a a a IJHIdxU' Yi Yj Yk Yz
(43)
VP = r gv~I J H I dx
Ju'
2
l aw'( a~ a2v' a a~av')+2Dll L aijakZaaa a +a(aa) IJHldx. .kZ=l U' Yi Yj Yk Yz Yj Yk YzZ,J,,
2
l aw'( a~ 82v' a a~av')+2D12L 2bjibkZa 8 a +a(aa) IJHIdx. .kZ=l U' Yi Yj Yk Yz Yj Yk YzZ,J,,
2
l aw'(a~82v' a a~av')+2D22L CijCkZaa a a +a(aa) IJHIdx(44). .kZ=l U' Yi Yi Yk Yz Yj Yk YzZ,J,,
Vdi v~E V(U'), h >0 khabe, Iffyh =(h,0),v' = D_hv~thayvao(43)-
Ch. 1Nghi?mye'ucuahili toanI 33
(44),dungb6 dS 1, ta du'<;1c
2
{ 1 (
82W'
)
82v~
VT = L Dll ,Db aijakl8.a. 8 8 IJHldx
. .k l=l U Yz YJ Yk YlZ,J, ,
1 (
82W'
)
82v'
+2D12 Db bijbkl8 8 8 81 IJHIdxU' Yi Yj Yk Yl
1 (
82W'
)
82v~
}+D22 Db CijCkl8 8 8 8 IJHI dxU' Yi Yj Yk Yl
- VT1+ VT2,
trongd6
2
{ 1
82DbW' 82v~
VT1 = L Dll aijakl 8 8 8 8 IJHIdx
. .kl=l U' Yi Yj Yk YlZ,J, ,
J
82DbW' 82v~
+ 2D12 bijbkl 8 8 8 8 IJHIdxU' Yi Yj Yk Yl
1
82DbW' 82v~
}+D22 CijCkl8 8 8 8 IJHIdxU' Yi Yj Yk Yl
Ch. 1 Nghifm ye'ucua hili loan1 34
2
{ 1
a2w' a2v~
VT2 = L Du Dh(aijakl)a .a .a a IJHI dx
. .kl-1 U' Yz YJ Yk YlZ,J, ,-
1
a2w' a2v'
+2D12 Dh(bijbkl)a a a a1 IJHIdxU' Yi Yj Yk Yl
1
a2w' a2v~
}+D22 Dh(CijCkl)a a a a IJHIdxU' Yi Yj Yk Yl
VP = {9D-hV~IJHI dx
}u'
~
{2D l aw'[ a~a2D_hv~ a ( a~aD-hv~)] IJ Id+ L..,; u aijakl- +- - H ). .kl=l u' aYi aYj aYkaYl aYj aYk aYlZ,J,,
+2D;2 { 2bjibklaw' ( a~a2D_hv~+~( a~aD_hv~)) IJHI dx}u' aYi aYj aYkOYl aYj aYk aYl
l aw'( a~a2D_hv~ a a~aD_hv~) I }+2D22 CijCkl-a _a 0 a +-a (-a 0 ) IJH dx .U' Yi Yi Yk Yl Yj Yk Yl
ChQn v~=DhW' E V(U').
Danh gia VT1. D~t
2 a2Dhw' 2 a2Dhw' 2 a2Dhw'
h = L aij a .a . ' l2= L bija .a . ' l3= L Cija .a . '. . 1 YzYJ .. 1 Yz YJ . . 1 Yz YJz,J= z,J= z,J=
Ch. 1 Nghi?mye'uGilahili roanI 35
taco d~ngthuc
[
EPDw' EPDw'
]
8;? 8Y18Y2 - (J
T
)
-1
[
h l2
]
J -l
82DhW' 82DhW' - H l l H
8Yl8Y2 8y~ 2 !
dohams6H E C2 nent6nt~iC1> 0 saocho
82DhW' 82DhW'
8y? 8Yl8Y2
82Dhw' 82Dhw'
8Yl8Y2 8y~
<C111h l2
l2 lj
suy fa
~
II
82DhW'
I1
2 <c1(li+2l~+l~).~ 8Yi8y. £2. . 1 )Z,)=
(j dayta dungchuffncuamatf~nA =(aij) : IIAII =(L:~j=1a7j}I/2.Cu6i
cungta co danhgia sau
IVT11 > C2 { (li +2l~+l~)IJHIdx
Jul
> C3
(t II&DhW'11 2 ) .z,)=1 8yz8Yj £2
Danhgia VT2
Do caehamDh(aijakl),Dh(bijbkl~,Dh(CijCkl)bi ch~nnen
{ 2 82w, 2 82'
IVT21 <C~Ju' ij; 8yJ)Yj k~l8Yk~~IIIJHIdx
Ch. 1Nghi?mytu cilabili todnI 36
Dungbfitd~ngthucSchwarztadu'cjc
(
2 a2w'
)(
2
II
a2v~
II )IVT21 < C~ ij; IIOYiOYJ L' i~l OYiOYj L'
( )
1/2
( )
1/2
2 a2w' 2 2 a2v' 2
< 8C~ij; IlaYiayJ2 i~,IIaYia~J2
BanhgiaVP
NhA "aYi OYi a~ . 1 21, h- h' kh? " 1" A A U'~nxet -a ' -a ' -a ' 'l =, a n ling am a VI len tl;tctrenx Y Yi
do do chungbi ch~n.Vi the":
!V?! < c~
(
r 19D_hv;ldx+t r a~w' a2v; dX
)}U' i,k,I=1}u' aYi aYkaYI
1/2 2
)
1/2
2 aD W' 2 a2v' 2
< C?(1lglll'+811 8:, t,) ("D-hv;"l,+'~1118Yi8~jt,
1/2 2
)
1/2
2 aw 2 &d 2
< C? (11911h+811~aYit2) (11~V;lliO+ij; IlaYia~J2
1/2 2
)
1/2
2 a2w' 2 a2v~ 2
< c;("9111,+ij; II OYiOy)lL')(j; II OYiOy)lL'
Bfitd~ngthuccu6icungcuadanhgiatrenco du'cjcdo (14)
Ch. 1Nghi~mytu Gilahili loanI 37
TITbfftd~ngthuc
/VT11< IVT21+ IV?I
taduQc
{ ( )
1~
2 82D W' 2 2 82w' 2
ij; II aYi~Yj IlL' <C ij; II OyiaYj IlL'
( )
1/2
}
2 82W' 2 2 82v' 2 1/2
+ IIglll2+ij; IIOYiOYjt, X {ij; IIOYiO~jIIJ (45)
thayv~=DhW' vao(45)taduQc
(
1/2
(
1/2
2 82D W' 2 2 82w' 2
,j;118Yi~Yj IlL') < c{ ,j;118Yi8yjt,)
1/2
}
2 82w' 2
+(119111,+ij; II oyJ}YjIlL')
tUclillla;~~:l"i,j =1,2 bj chi).n.Vi Q' cc U' nen
82DW' 82Dw'
II
h
II
<
II
h
II
..
1 2, 2,) = , .
8Yi8Yj £2(Q')- 8Yi8Yi £2
~
11
82DhW'
l1
bi ch~n.
suyfa 8Yi8Yi £2(Q')
B ,:!d~ 1 h
82W'
H 1(Q
'
)
..
1 2
0 e c ota 8 8 E ,2,)= , .Yi Yi
Ch. 1Nghi~myeucilabili toanI 38
Voi vI E V(U'), Vt,l > 0 kha nho. Lffy h = (h,0),k = (k,O),V =
D_k(D_hVI) sau doIffy VI = Dh(DkW) thayvao(27)chungminhtudngt1;1'
nhutfongC.2 d
1,
82Dh(DkW')
II
..
1 2 b
"
h
- T ' b,A! dll:: 1
ta U<;lc 8Yi8Yi ' 1" J =, ! c ~n. U 0 e
ta suy fa
84W' 84W' 84W'
7]4' 8 38 '8 28 2E L2(Q'),YI YI Y2 YI Y2
Vi tfen Q', W'=W' nen
84W' 84w' 84'- w
8Yf ' 8yr8Y2'8yi8y§ E L2(Q')
suy fa
84W 84w 84w
8x4' 8x38y' 8x28y2E L2(H(Q'))
Cu5i clIng ta din kitJ'rn Ira ~:~ t6nt(li vii thuQcvila L2(UnO). Vi U' c Q+
dodoH(U') c H(Q+)=un sl,dungcongthucd6ibiSntadU<;lc
1
82w82v
1 (
82w82v 82w 82v
)D22 --dx = fv - Dn-- - 2DI2 dxH(Q')8y28y2 H(Q') 8x28x2 8x8y8x8y
Ch. 1Nghi?mytu cuahili todnI 39
biSn d6i tich phan ta du'Qc
1
82w82v
1 (
84w 84w
)D22 _8 2 8 2dx = f - Dn-8 4 - 2D128 28 2 vdxH(Q') Y Y H(Q') X X Y
< M (lIfllL2+II ~x~IlL' +118~;y211L')IlvllL'
hay
(82w82v M
[ II
B4w
ll II
84W
II ]JH(Q') 8y2 8y2dx <D22 Ilfll£2 + 8X4 £2 + 8x28y2 £2 IIvll£2
(46)
B~t
Tv = ( 82w82v
JH(Q') 8y2 8y2dx
Tv tuySntinhva lienWc(do((46)» dodo theodinh19biSudi~nRiez co
duynhfft9 E L2(H(Q')) saocho
1
82w82v
1Tv = --dx = TvdxH(Q')8y28y2 H(Q')
84W
hay T = 8y4 E L2(H(Q'))
Tu'dngtt!nhu'tfongtru'onghQpR~ ta suyfa w E H4(D} D