PHƯƠNG PHÁP BAYES VÀ ỨNG DỤNG TRONG MẠNG NƠRON
ĐÀO HỒNG NAM
Trang nhan đề
Mục lục
Phần mở đầu
Chương1: Tổng quan.
Chương2: Mạng Nơron xác suất.
Chương3: Mạng Nơron nhân tạo.
Chương4: Bài toán ứng dụng.
Chương5: Kết luận.
Phụ lục
Tài liệu tham khảo
53 trang |
Chia sẻ: maiphuongtl | Lượt xem: 2280 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Phương pháp bayes và ứng dụng trong mạng nơron, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Op,n6chiia nhanto'dambaat6ngxacsu1th~unghi<$mb~ng1.Vi v~y,
c6th@vie'tlu~tphanlOpBayesvoivi dl)hailOpdu'Oid(;lngtu'dngdu'dng:
Quye'tdinh lOp Cl ne'u P(XICI)P(CI)> P(XIC2)P(C2)va quye'tdinh lOp C2 ne'u
P(XIC2)P(C2)>P(XICl)P(Cl)
Trang 10
Vi cacxac sufftP(XICi)va P(cDco th€ tinhdu'<Jctu m§:udffcho,lu~tBayes(j trencoi
nhu'dc,lllgthlfchanhcuabai toantho'ngke phanlOp.Ta thffyca hai xac sufftP(XICi)
vaP(Cj)la quailtrQngtrongbai toantho'ngke phanlOpdambaaclfcti€u xacsufft
cuasaiso'phanlOp.
Vi du 1.1:X6tbaitoanphanlOploaichimvoiP(CI)=P("d~ibang")=0.8vaP(C2)
~
=P("di~uhau") =0.2va dffbie"tcachamm~tdQxacsufftP(XICI),P(XIC2)'Gia sa
do'ivoi mQtloai chimmoi,dffdodu'<Jckichco cuano la x =45cm.Ta tinh du'<Jc
p(45Ici)=2.2828X 10-2va p(45IC2)=1.1053X 10-2.Vi v~ylu~tphanlOpdt!doanla
thuQclOpci("d~ibang")vi P(XICI)P(CI)>P(XIC2)P(C2)'Giasadffbie"txacsuffthong
di~uki~nrex)co gia tr~la p(45)=0.3.Xac sufftcuasai so'phanlOpla :
P(classification_errorlx)=mill {P(CI,x), P(C2,x)}
=min
{
P(X Ic\)P(c\), p(x IC2)P(C2)
}
= {0.0754,0.07}=0.07
p(x) p(x)
1.4.Bai tminphanlopBayest6ngquat
Chungta se t6ngquathoa lu~tphanlOpBayestrongtru'ongh<Jpcacdo'i
tu'<JngthuQcv~nhi~uhonhai lOpva cacd~ctinhdodu'<Jccuacacdo'itu'<Jngco
nhi~uhonmOtbie"nd~ctru'ng
1.4.1.Di;}ctrling bQi- vectordi;}ctrting
X6tcacd~ctru'ngiatr~thlfc.Tathaythe"cacd~ctru'ngiatr~thlfccuamOt
do'itu'<Jngla mOtvectorcOtn chi~ux ERn
x\
X2
(1.18)x=
Xn
Trang 11
voi Xi E R laph~nta thli i cuavectord~ctning.MQtvectord~ctningx (mQtmftu
trongkh6nggian d~ctru'ng)thaythe'cho mQtd6i tu'Qngva du'QCcoi la mQtdiSm
trongkh6nggianEuclide n chi~u.Sv th6hit%ncv thS cuavectorx baog6mcacdQ
docuad6i tu'Qng.Vi dv, d6i voi d<;libangva di~uhall co thSdo du'Qchai d~ctru'ng
cuachunglakichcovadQnhanhnhyn(d<;lngvectord~ctru'ng2chi~uX E R2)
~
[
Xl
] [
kiChco
]X = X2 = de)nhanhnhyn
(1.19)
1.4.2.Lu~tphanlopBayeschocaed6itu'Q'ngdalop,dad~ctr1ing
Cacd6itvongco thSdu'Qcphanvaonhi~ubonhaildpphanbit%t(cactr<;lng
thaitv nhien).Nhinchung,cothSgiasamQtd6itu'Qngcoth6thuQCv~Ildp phan
bit%t(1tr<;lngthaitvnhienkhacnhau)
C={Cj,C2,...,Cj} (1.20)
Vi dV,cothSphancacloaichimthanh4 ldp.Ky hit%uP(Cj)la xacsuftti~nnghit%m
mad6itu'Qngtie'ptheosethuQcv~ldpCj.XacsufttP(Cj)(i=l,2, ...,I) tu'onglingvoi
ty It%cacloai chimtrongldp thli i tronggiOih<;lncuavo so'cac loai chimdaquailsat
du'Qc.
Hamm~tdQxacsufttco di~ukit%n(tr<;lngthaicuahamm~tdQxacsufttco di~u
kit%n)du'Qcky hit%uchungchotfttcacacldpla p(xlcj)(i=l,2, ...,I). Hamm~tdQxac
sufttdiSmky hit%ula p(Cj,x) la m~tdQxacsufttmad6i tu'QngtrongldpCjva co
vectorgiatrid~ctru'ngla x.Hamm~tdQxacsufttcodi~ukit%nP(cjlx)(i=l,2,1)xac
dinhmQtd6itu'Qngldpla Cjdachomagiatridodu'Qcuavectord~ctru'ngla x,xac
sua'tP(cjlx)la xacsuftth~unghit%mvataco:
I
Ip(Ci Ix)=1
i=1
(1.21)
Trang 12
Tli 1;'thuye'txacsua'tadabie'tcacquailh~saudayv6i xacsua'tiennghi~mva
xacsua'th~unghi~m:
p(Cj,x)=p(cjlx)p(x),i=l, 2
p(Cj,x)=p(xlcj)p(cD,i=l, 2
(1.22)
trongdorex)la hamm~tdQxacsua'tkhongdieuki~ncuabie'nd?ctrlingx.Tabie't
rang:
,
p(x)=LP(x Ic;)P(c;)=p(x ICl)P(Cl)+"'+p(x Ic,)P(c,)
i=1
(1.23)
vdi i =1,2, ...,1.Theo dinh1;'Bayes
P(XICi)P(Ci) . 1suyra P(Ci Ix) = ,1=1,2,...,
p(x)
(1.24)
,
Vi p(x)=LP(x Ic;)P(c;) nen ta co:
i=1
P(ei I x) = p(x Ic;)P(c;) .~ (
,1=1,2,...,1
f:tp x Ic;)P(c;)
(1.25)
D6i vdi cac d6i tliQngnhieu Wp vdi vectord?c trling nhieu chieu, lu~tphanWp
Bayesla:
"ChotrlidcmQtd6i tliQngv6i vectorgia tri d?c trlingtlidngling la x, gall d6i tliQng
vaomQtWpCjvdi xac sua'th~unghi~mco dieuki~nWnnha'tP(cjlx)"
ho?c:
"ChotrlidcmQtd6itliQngvdivectorgiatri d?ctrlingdachox,gan d6itliQngvao
WpCjkhi : P(c)x) >P(cjlx),i =1,2,...,1;i:;t:j" (1.26)
Trang 13
Vi xacsua'tc6di@uki~np(cilx)kh6xacdinh,dungdinhly Bayesc6th~diSntaxac
sua'tnay du'oid<;tngP(XICi),P(Ci)vap(x).Khi d6lu~tphanlOpBayesdu'Qcvi€t du'oi
d<;tngthl,l'chanhnhu'sail :
"Voi mQtd6i tu'Qngcho tru'ocva dffbi€t vectorgia tri d~ctru'ngx, gall d6i tu'Qng
vaolOpCjkhi :
p(x ICj)P(c) >p(x IcJP(cJ , i = 1,2, ...,1;i;>tj"
p(x) p(x)
(1.27)
Bop(x)dm~uso'cua2v€ ba'tphu'ongtrlnhtrentac6lu~tphanlOpBayes:
"Voi mQtd6i tu'Qngchotru'ocva dffbi€t vectorgia tri d~ctru'ngx, galld6itu'Qng
vaolOpCjkhi :
p(x Ic)P(Cj) >p(x IcJP(cJ, i =1,2, ...,1;i;tj" (1.28)
1.5.Ctfcti~uhoarui ro tronghili tminphanlOp
TrongmQts6lingdvng~hu'chfindoany khoa,chungtathu'ongmongmu6n
lamcl,l'cti~uh6asai so'chfindoan.
Gia sU',mQtquy€t dinhphanlOpdl,l'atrenvectord~ctru'ngdffchox xacdinhd6i
tuQngthuQclOpCjtrongkhid6itu'Qngthl,l'csl,l'thuQcv~lOpCi. Hamthi€u hvttrong
truonghQpnay du'Qcxacdinhnhu'sau:
Lij=L(decision_classjltrue_classD (1.29)
D6ivoibaitoanphanlOpc61lOp,cacphffntU'thi€u c6d<;tngmatr~nvuongL
Lll L12'" Lll
I L2l Ln ...L2lL= (1.30)... ... ......
Lll LI2...Lll
Trang 14
Xet svphanlOpcuamQtdO'itli<;5ngvOivectorgia tri d~ctIling x dffbi€t. Ta kh6ng
bi€t lOp thvc Sv cua dO'itli<;5ngnay, no co th~la mQttrong sO't~ph<;5pcac lOp
{Cl, C2,...,cd.
GiasaP(Ci,x) Ia xac sua'tco di~ukit%nmadO'itli<;5ngthuQCv~lOpthvcSVCivoi
di~ukit%nx. Ta sexacdinhky vQngco di~ukit%nthi€u lien quaildenvit%cquy€t.
dinhdO'itli<;5ngthuQcv~lOpCj,trongkhi dO'itli<;5ngay thuQcv~lOpCj i =1,2, ...,1;
i:;t:jla :
I
R(cj Ix) =IL(decision - classj Itrue- classJP(c/ Ix)
/=1
(1.31)
ho~cd d(;lngng~nhon :
I
Rj =I LijP(c/ I x)
j=1
(1.32)
Ky vQngthi€u Rj =R(Cj Ix) dli<;5cgQila di€u kit%nrui rooBi€u kit%nrui ronayco
lien quail den quy€t dinh Cjdli<;5cquy€t dinhbdi vectord~ctIling x. N€u dffbi€t
vectord~ctIling la x thl co th~lam cvc ti~udi~ukit%nrui ro Rj bftngvit%cdlia ra
quy€t dinhphanlOpCj(jE {1,2, ...,I})
Lu~tphanlOp(quy€t dinhphanlOp)gallmQtlOpchom6i vectord~ctIling.Co th~
Xclcdinhrui ro toanbQla ky vQngthi€u co lienquaildenquy€t dinhphanlOpdff
bitt,xetta'tcacacd(;lngcoth~cocuax cuakh6nggianvectord~ctIlingnchi~utli
Rx
I
R =J R(cjIx)dx=J ILijP(c/ Ix)dx
Rx Rx /=1
(1.33)
Rui ro toaDbQR dli<;5ccoi nhlimQtlieu chufinphanlOp lam cvc ti~uhoa rui ro co
lienquaildenquy€t dinhphanlop. Tli dinhnghlacua rui ro R ta tha'yrftngquy€t
Trang 15
dinhphan lOp CjduQcduara dS dambaa di~ukit%nflU ro Rj =R(cj [x)cangnho
dng tBtdBivoi m6id(;lngcuavectord~ctIlingx.
UBi voi bai tminphanlOpt6ngqmlthall,taco lu~tphanlOpBayesnhusau:
"UBi voi mQtdBi tuQngco vectorgia tri d~ctIling x dffbie't,UOCluQngta'tca di~u
kit%nrui ro chota'tca caclOpco thSduQcCjU =1,2, ...,1)
I
R(cj Ix) =I LijP(cl Ix), U =1,2, ...,1)
1=1
(1.34)
vachQnmQtquye'tdinh(mQtlOp)Cjsaochodi~ukit%nruiro R(cj Ix) lanhonha't:
R(Cj[x)<R(ckIx),k= 1,2,...,I;k;t:j" (1.35)
Rlii ro toanbQR d(;ltduQccl,l'ctiSu la ke'tquacuaquye'tdinhphanlOpBayesduQc
gQila ruiroBayes.
Dl;(avaodinhnghiadi~ukit%nrui ro R(ciIx), lu~tphanlOpBayesduQcvie'tduoi
d~ng:
"UBi voi mQtdBi tuQngco vectorgia tri d~ctIling x dffbie't,chQnmN quye'tdinh
(mQtlOp)Cjsaocho
I I
I LijP(c;[x)<ILlkP(CI [x), k =1,2, ...,I; k;t:j"
;=1 ;=1
(1.36)
Tli dinh19Bayes, P(CI Ix)=p(x IcJP(cJ
p(x)
(1.37)
CothSvie'tl~ilu~tBayesnhusau:
"ChQnmQtquye'tdinh(mQtlOp)Cjsaocho
f L p(xlc;)P(c;) ~L p(xJcJP(cJ k =1 2 I.k ."L Ij <L Ik " ,..., , :;i:J
1=1 p(x) 1=1 p(x)
(1.38)
Bop(x)(j cahaive'cuaba'tphuongtrlnhtren,tacolu~tphanlOpBayesnhusau:
Trang 16
"ChQnmOtquy€t d~nh(mOtlOp)Cjsaocho
I I
I Lijp(x IcJP(cJ<LLikP(X IcJP(cJ, k =1,2, ...,1;k:;t:j"
iz] iz]
(1.39)
1.5.1.Ctfcti~uhoariii ro trongbili tminphanlopBayes
Thongthu'ong,mOtbairoanphanlOpcolienquaild€n vi~cquy€td~nhlOpCj
(i=I,2,...,1)mamOtdo'itu'QngmoithuOcv€ lOpnay.Giasacacquy€Cd~nhphanlOp
saitrongh~uh€t caclOp.VI v~y,n€u mOtdo'itu'Qngdu'QcphanlOpthuOcv€ lOpCj
trongkhi thvct€ la lOpCjthl khi j=i, SvphanlOpIa dung,ngu'Qcl~ikhi i;t:jta co sai
s6phanlOp.
Ta d~nhnghlad.;mgdo'ixung0 - 1cuahamthi€u :
{
o i=j
Lij =L(decision- classj Itrue- classi)= 1'. ., 1"*}
(1.40)
Hamthi€u (j tren du'Qcgall 0 khi phanlop dungva gall 1 khi phanlOpsai.Tfit ca
cacsaiso'h~u nhu'la nhu'nhau.
Taco:
I I
R(cjIx)=LLijP(Ci Ix)= LP(Ci Ix)=1- P(CjIx)
iz] iz],i..j
(1.41)
P(CiIx)la xacsufitcodi€u ki~nmaquy€td~nhphanlOpCjla dungdo'ivoix dffchao
Tli (1.36)ta dffbi€t lu~tphanlOpBayesdu'ara mOtquy€t dinhphanlOpcvc ti€u
hoa di€u ki~n rui ro P(Cj Ix). Trong (1.41),d€ cvc ti€u di€u ki~nrui ro phai tlm
quy€t d~nhphanlOpCjsaocho 1- P(Cj Ix) (1.42)
nhonhfit,nghlala xacsufith~unghi~mcodi€u ki~nP(CjIx)IOnnhfit.Tli dotaco
lu~tphanlOpBayescvcti€u xacsufittrungblnhcuasaiso'phanlOpnhu'sail:
"ChQnmOtquy€t dinh(mOtlOp)Cjsaocho
Trang 17
P(Ci IX»P(Ck Ix),k= 1,2,...,I;kt:j" (1.43)
Theacachtrlnhbay nay, co th~timduQclu~tphanlOpdambaa cl;t'cti~uxac sua't
trungbinhcuasai s6phanlOp.MQtxacsua'trungbinhcuasai s6phanlOpduQccai
nhula mQttieuchuffnqtc ti~ud~h;l'achQnquy€t dinhphanlOpt6tnha't.
Ne'uma tr~nthi€u L duQcchQnrheacachgall gia tri 1 ehata'tea caequy€t dinh
~
phanlOpkhongchinhxac va gall gia tri 0 ehaquy€t dinhphanlOpehinhxac(Ljj)=O
(1.44)
thilu~tphanlOpBayesqtc ti~urui ro clinggi6ngnhulu~tphanlOpBayescl;t'cti~u
xacsua'trungbinhcuasai s6phanlOp.
1.5.2.T6ngquathoas1/phanloptheotieuchuftnhqply c1/cd~i
D6i vOicacd6ituQngnhi6ulOp,nhi6ud~etrung,coth~dinhnghlamQtcach
t6ngquattys6hQpIy ehalOpCjvaej
p(xIe) . . - 1 2 I .",J,I-, ,..."J*1
p(x Ic;)
(1.45)
vagiatringuongt6ngquat
(L - L )P(c. )
eoo = lJ II ,
lJ (Loo -Loo)P(c.).I' .1.1 .I
(1.46)
vi v~yrui ra nh6nha'tronglu~tphanlOprheatieuchuffphQpIy el;t'cd(;lico th~
du'Qcgiai thichla chQnmQtlOpsaGehaty s6 hQpIy IOnhonta'tea caegia tri
ngu'ongkhacd6ivoicaelOpkhaenhau:
"Quy€tdinhlOpCjn€u
voimatrn thiu :
0 1 1 1
.1 0 1 1
L=
I .... .... .... ....
1 1 1 0
Trang 18
p(xlei) >e. , i =1, 2, ...,1;i:;t:j"Jl
p(x IeJ
(1.47)
D6i voi cachamthie'ud6i KungLjj =Ljj voi Ljj =0,tacolu~tphanlOpsauday:
"Quye'td~nhlOpCjne'u
p(x Ie) >P(eJ , i =1, 2, ...,1;i:;t:j"
p(x IeJ pee)
(1.48)
1.6.Quye't~nhmi~n,xacsua'tsais6
MQtquye'td~nhphanlOpchiakh6nggiand~ctIlingthanh1mi€n quye'td~nh
roi nhau(kh6nggianquye'td~nhcon)RI, R2,...,RI' Mi€n Rj la kh6nggianconma
m6i vector gia tri d~c tIling x rdi vao trong mi€n nay dliQc gall vao lOp Cj
(Xemhlnh 1.2)
Xacxua't
P(XICI)P(CI)
Quye'td~nhbien
(j t6i1fu
1c:'"Quye'td~nhbien
kh6ng t6i u'u
EE 7~
RI R2
Hinh 1.2 : Quye'tdinh bien
3;.x
Nhln chung,mi€n Rj (i =1,2, ...1)kh6ngc~nk€ nhauva co th~dliQcchia thanh
nhi€umi€n conroi nhau,tuynhienta'tcacacvectortrongcacmi€n naysethuQcv€
lOpgi6ng nhau Cj.
Cacmi€n giaonhauvacacbiengiuacacmi€n k€ nhaudliQcgQila quye'td~nhbien,
VIcacquye'tdinhphanlOpcothayd6iquam6ibien.
Trang 19
Cong vi~cphan lOp 1atim cac 1u~tphanlOp dam baa vi~cchia khonggian d~c
tIlingvao cac miSn quye'tdinht6i uu R1,R2,...,Rl (voi cacquye'tdinhbien t6i uu).
Cacquye'tdinhbient6iuucoth€ khongdambaavi~cphanlOpkhongco sail~m
nhlingdambaasaisO'trungbinhnhonhfittheolieuchu§:nCVcti€u dffchQn.
Ta segiaiquye'tkhokhantrongbai loanphanlOpnay d€ timcacmiSnva cac
~
quye'tdinhbient6i uub~ngcachphantichmQtphanlOphai lOpvoi vectord~c
tIlingx,n chiSu.Gia sukhonggiand~ctningdliQcchia (coth€ khongt6iuu)thanh
haimiSnkhacnhau,Rl tlidngling voi lOpCl va R2tlidngling voi lOpC2.Co hai SV
ki~nlam xufithi~nsai sO'phanlOp. D~ulien, sai sO'xufithi~nkhi mQtvectord~c
tIlingx do dliQcrdi vao miSnRl dliara quye'tdinhCl trongkhi do lOpthvcsv 1aC2.
Thli hai, vectord~ctIling x rdi vaomiSnR2trongkhi lOpthvcsv 1aCl.Vi cahai sai
s6naylo~itf\llin nhau,tacoth€ tinhxacsufitt6ngcQngcuacacsaisO'phanlOp
khacnhau(DudaandHart, 1973;Bishop,1995)
P(classification- error)=P(x E Rl ,c2) +P(x E R2,C1) (1.49)
=P(x E Rl I C2)P(C2)+P(x E R2 IC1)P(C1)
Sadl;lngdinh1;'Bayestaco:
P(classification- error) = r p(x Ic2 )P(c2)dx + r p(x Ic1)P( c1)dx
JRI JR2
(1.50)
BaygiGtacoth€ dliafa bailoanphanlOpt6iuu1avi~cchQn1vaquye'tdinhmiSn
Rt, R2 (vi v~y xac dinh dliQc lu~t phan lop) lam cvc d~i xac sufit
P(c1assification_error)(j lIen (la mQtlieu chu§:nt6i uu). Xet mQtd6i tliQngvoi
vectord~c trling x dff chaoXac sufit cua sai sO'phan lOp dliQc cvc ti€u ne'u
p(xlct)P(ct)>P(XIC2)P(C2),tasechQnmQtmiSnRl vaR2saochox thuQctrongmiSn
R1,vi diSunaydambaasaisO'phanlOpnhohdn(tieuchu§:ncvcti€u). DiSunay
20
tu'dngdlidngvoi lu~tphanlop Bayeslamct!cti€u xacsuc1tcuasais6trungblnh
b~ngcachchQnmQtlOpvoixacsuc1th~unghi~mIOnnhc1t.
MQtcongthucphanlOpt6iuudt!alIenvi~cct!cti€u xacsuc1tsais6phanlOpc6th€
du'<;lct6ngquath6ad6ivoi d6itli<;lngnhi€u lOpnhi€u d~ctIling.B6i voibailoan
nhi€u lOp,vi~cxacdinhxacsuc1tquyetdinhphanlopdungd6hall.Cacd6itli<;lng
du'<;lcphanlOpthanhI lOpphanbi~tCbC2,...,c],voivectord~ctIlingnchi€u KERn,ta
coXaCsuc1ttrungblnhphanlOpdungcuacacd6i tli<;lngmOidt!alIen vectord~c
tIlingx :
I I
P(classification_correct) =Ip(x ER;,cJ =Ip(x E R; IcJP(cJ
;=1 ;=1
(1.51)
I
=I JR p(x IcJP(c;)dx;=1 I
trongd6Rj la mi€n quyetdinhc6 lienquaildenlopCj
Nhu'v~ybai loan phan lOp la chQnIDQtquyetdinh mi€n Rj lam ct!cd(;lixac suc1t
reclassification_correct)la mQtlieuchuffnt6iuu.Tieuchuffnnaydli<;lcct!cd(;libdi
vi~cchQnmi€n Rj saochom6ivectorgiatri d~ctIlingx dli<;lcgallvaomQtlOpma
tichphan t;p(x Ic;)P(c;)lact!cd(;li(d6ivoimQix)
1.7.Caehambi~tthue
MQttrongnhl1'ngd(;lngc6di€n nhc1tcuavi~cphanlOpladi6ntad(;lngbailoan
htachQnlOpdt!alIenvectorgiatrid~ctIlingx trongd(;lngkinhdi€n sad\lngt~ph<;lp
rad€ xacdinhcachambi~thuc
diCK),i =1, 2, ...,I (1.52)
Trang 21
M6i bi~t thuc c6 lien quail de'nmOtlOp C1,1th~dii du'Qcnh~nd£;lngCj (i=I, 2, ...,1).
B~titmin phan lOp sa d1,1ngcac ki~ubi~tthuc niiy gall mOt d6i tu'Qngvoi vector gia
trid~ctIlingx dii bie'tcholOpCjne'u
dj(x)>dj(x),voi mQii = 1,2, ...,1,i:;t:j. (1.53)
N6i cachkhac,biii toanphanlOpgall mOtd6i tu'Qngviio mOtlOpsaochobi~tthuc
tu'ongling c6 gia tri IOnnha't.
Bi~tthucphanlOpdu'Qcthie'tke'Iii mOth~th6ng(Xem hlnh 1.3)chuat~phQpcac
bi~tthucdj(x)(i =1,2, ...,1)c6 lien quailvoi m6i lOpCj(i =1,2, ...,1)clingvoi vi~c
IvachQncacbi~tthucc6giatri IOnnha't
dj(x), i =1,2, ...,1 (1.54)
max(diCx»,i =1,2,...,1
Lu~tphanlOpdu'Qcdi~ntanhu'sau:
Chotru'ocmOtd6itu'Qngvdivectorgiatrid~ctIlingx:
1.Tinhgiatrib~ngsO'cuata'tcacachambi~tthuctheox
dj(x),i =1,2, ...,1 (1.55)
2. ChQnlOpCjIii mOttien doancua lOpth1;l'cs1;l'saocho gia tri cua hiimbi~tthuc
dj(x)Iii IOnnha't,tucIii l1;l'achQnmOtlOpCjsaochod/x) =max(dj(x»,i =1,2,...,1
Hambi~tthucc6th~xacdinhb~ngnhieucachd1;l'atrentieuchucfnphanlOpt6iUu.
Ch~ngh£;lnta xac dinh cac hambi~tthucchos1;l'phanlOpBayes c1;l'cti~uxac sua't
cuasai sO'phanlOp.D6i voi bai toanBayes,s1;l'l1;l'achQncac hiim bi~tthucIii xac
sua'th~unghi~mc6 dieuki~nP(cjlx)
diCx)=P(cjlx), i =1,2, ...,1 (1.56)
Sad1,1ngdinhly Bayes,xacdinhd£;lngth1;l'chiinhcua hiimbi~tthuc
22
d ( )=p(x ICj)P(cJ .=1 2 IiX, 1 " ...,
p(X)
di(x)=p(xlci)P(Ci),i= 1,2,...,1
(1.57)
(1.58)
Tatha'yding,chicogiatq cuahambi~tthlicla quailtrQngtrongvi~cxacdinhlOp.
VI v~y,cachamdondi~utangf(dj(x))cuadj(x)sedu'aramQtquy€tdinhphanlOp
d6ngnha't.Coth~tlmd~ngtu'ongdu'ongcuabi~thlicBayesb~ngcachiffylogaritt!
nhiendiCx)cuahambi~tthlic.
di(x) =Inp(x ICi)+InP(Ci)' i =1,2, ...,I (1.59)
Lu~tphanlOpdu'<;1cxacdinhb~ngcachchQncachambi~tthlicdiCx)chom6ilOpCj.
Tucla, khonggiand~ctru'ngdu'<;1cchia thanhI mi€n khacnhauRj (i =1,2, ..,I).M6i
mi€n co lienquaild€n quy€t dinhphanlOp,n€u vectorgiatri d~ctru'ngx roi vao
mi€n Rj thl mQtd6i tu'<;1ngdu'<;1cphan lop thuQcv€ lop Cj.
Hlnh1.3
NghIala,n€u chotru'ocvectorgiatrid~ctru'ngx cod/x) >dj(x),i =1,2, ...,I, i:t:j,thl
x seroi vao mi€n tu'ongling Rj va quy€t dinhphan lOpgallmQtd6i tu'<;1ngmoi vao
Bit thlic d)(x) Lop,
cholOpc) It!a
chQn
Bit thlic dz(x) Max....
cho lOpCz
d)(x)
Bit thlic .....
....
cholOpc)
Trang23
lOpC}Cachambi<$tthucnayxacdinhcacquy€t dinhbien.Cac quy€t dinhbien
xacdinhmQtb~m~trongkh6nggiand~ctntng,d d6cacquy€t dinhphanlOpthay
d6i.D6ivoicacmi~nk~nhauRjvaRj,quy€tdinhbienchiacacmi~nd6c6th~tim
du'Qcbdi phu'ongtrlnh quail h<$ham bi<$tthuc.
d/x) =dj(x) (1.60)
~
Cacquy€tdinhbienkh6ngbianhhu'dngbdicachambi<$tthucdondi<$utang.
T6ngquat,nli ro nhonha'trongphanlOpBayesd1,iatrencachambi<$tthucdu'Qc
xacdinhla
dj(x)=- R(cjlx), i =1, 2, ...,1 (1.61)
7.1.1.Hambi~tthucGausstrongbaitminnh~nd~nghailOp
D6i voi bai loanphanlOphailOpClva C2,tadffxacdinhhaihambi<$tthuc
d1(x)va dz(X)c6 lienquaild€n m6ilOp.Cachambi<$tthucnayxacdinhhaimi~n
Ri vaRz trongkh6nggiand~ctru'ngdu'Qchiabdiquy€t dinhbiend d6cacham
bi<$tthucb~ngnhau
di(x)=dz(x) (1.62)
vaquy€t dinhphanlOpthayd6i tITlOpCl sanglOpC2.MQt d6i tu'Qngvoi vectord~c
tru'ngx du'QcphanlOpvao lOpCl (thuQcv~mi~nquy€t dinh R1)n€u d1(x)> dz(x)
vangu'Qcl£,tid6itu'Qngd6du'QcphanlOpvaolOpCz(thuQcmi~nquy€tdinhRz).Ta
tha'yrangtrongbai loanphanlOp2 lOp,kh6nggiand~ctru'ngdu'Qchiathanhhai
mi~nphanbi<$t,vi v~ytac6th~xayd1,ingmQthamgQila hamphand6ivoiham
bi<$tthucdon
d(x)=di(x) - dz(x) (1.63)
Voi x chotru'oc,tinhgia tri phand6icuahambi<$tthucdond(x)va gallvaomQtlOp
d1/atrenda'ucuagia tri nay.
24
B6ivoicachambi~thucduQcilIachQnd1!avaolu~tBayes,tacoth€ xacdinhduQc
hamphandoi voibailoannh~nd~.mg2lOp
d(x)=P(CIIx)- P(C2Ix)
d(x)=p(x ICI)P(Cl) - p(x IC2)P(C2)
(1.64)
(1.65)
ho~cd(x)=Inp(x ICI) +In P(CI)
p(x IC2) P(C2)
(66)
1.7.2.Bi~tthucd~ngtoimphtidngvatoytn tinhtheolo~UBayes
Trongcacphfintruoctada:cod;;mgsaildaycuahambi~tthucBayes
di(x)=lnp(x IcJ+ InP(cJ, i=1,2,...,1 (1.67)
BailoanphanlOpd1!atrencacbi~thucnaygallmQtd6ituQngvoivectord~ctrung
x cholOpCjvoi hambi~tthucla IOnnha't.Ghl savectord~ctrungx cophanph6i
chu£n hi€u chi€u Gausstrongph(;lmvi m6ilOp.VI v~ym6ithanhphfincuavector
d~ctrungcophanph6ichu£nnhi€u chi€u ho~cphanph6iGausstrongph(;lmvi m6i
lOp.D(;lngvectorcuaphanph6ichu£nho~cphanph6iGausscuahamm~tdQxac
sua'tp(xICj)d6ivoivectord~ctrungxtrongph(;lmvi lOpCjduQc hobdibi€u thuc
I
1
[
IT ,,-I
]p(x Ci)= /2
1 1
1/2 exp- 2(x-pJ "-i (x-pJ(271Y Ii
(1.68)
voiPiIatrungbinhcuavectord~ctrUnglOpthui, Ii la matr~nhi~pphuongsaicua
vectord~ctrunglOpthui, IIi Ila dinhthuccuamatr~nhi~pphuongsai,n Ia sO'
chi€ucuakhonggianvectord~ctrungx.
Thayphuongtrinh(1.68)vaophuongtrinh(1.67),tacod(;lngsaildaycuahambi~t
thuc
di(x)=In 1 1/2exp[
- !(x - pJT I~I(x- PJ
]
+lnP(cJ, i =1,2, ...,1
(27l"r/2IIil 2
(1.69)
Trang25
d;(x)=-~lnIL;I-~(X- JiJT L~l(X- JiJ-; In(27l")+lnP(e;),i =1,2,...,1 (1.70)
Io~itrll %In(27l"), taco
d;(x)=_! InIL;I- !(x - JiJT L~l(x - Ji;) +InP(eJ, i =1,2, ...,12 2 (1.71)
Bi~tthuc(j tren1amOtd~nghamb~chaicuavectord~ctIlingx d6ivoi P(eJ va
I;. No duQCgQi1abi~tthucb~chai.Cacquye"tdinhbiengiii'acaclOpi vaj co
diCK)=d/x) 1ahamsieub~chaitrongkh6nggiand~ctIlingn chi~u.
Bai toanphanlOpdlfatrenbi~tthucb~chaiBayesduQcKaydlfngnhusau:
rho m~ux, gia tri m~tdOxacsua"tco di~uki~np(xlcj) va xacsua"tti~nnghi~m
P(cDd6i voi ta"tCelcac lOp i =1, 2, ...,1
1. Tinh gia tri cua vectortrungbinh Ji; va matr~nhit%phuongsai L; chota"tCel
caclOpi =1,2, ...,1dlfatrent~phua"n1uy~n
2. Tinh cacgia tri hambi~tthucchota"tCelcaclOp
d;(x)=- ~In[L;I-k(x- Ji;f L~l(X- JiJ +InP(eJ, i =1,2,...,1 (1.72)
3. ChQnlOpCj1amOtdlfdoancualOpthlfcslf saochogiatri cuahambi~tthuc
d/x) 1aIOnnha"t
Tilc la, chQnlOpCjsaochod/x) =max(diCx)),i =1,2, ...,1
Ke'tqua:Lop daduQCdlfdoan
-
1.7.3.Bi~tthuctuye'ntinh : DiingthuctronglOpmatri.inhiepphuongsai
Gielsli'cachi~pphuongsaib~ngnhautrongta"tCelcaclOpL; =L (i =1, 2, ...,1).
TrangtruonghQpnay,tronghambit%tthucb~chai,ph~ntli' InIL;!=ILlla lOpdOc
I~p,vi V?yco th~vie"thambit%tthuc(j d,;mg
Trang26
d;(x) =-~(x- f.1;f 2:-I(X- f.1;)+InP(c;), i =1,2,...,12 (1.73)
Taco:
I
( )T"'-I ( ) 1 T,,-I 1"'-1 1 T,,-I 1 T",-I- X-II. L.. X-II. =-x L.. X--L.. 11.--11. L.. X+-II. L.. II.
2 r, r, 2 2 r, 2r, 2r, r,
VI 2:1ad6i Kungnen 2:-1clingd6i Kungva d day ~XT2:-1f.1i=~f.1r2:-1x, hdnnil'a,2 2 ~
ph~n tlY ~XT2:-1X 1alOpdQCl~p,VI the"no co th€ bi lot;litIll, khi do taco dt;lngham
bi9tthuc
1
d;(x)=f.1r2:-1X--f.1r 2:-1f.1i+InP(ci), i = 1,2, ...,12
(1.74)
Bi9tthucd tren1amQthamtuye"ntinhcuavectord~ctIlingx, nodliQcgQila ham
bi9tthuctuye"ntinh.Quye"tdinhbiengiualOpi valOpj saochodiCK)=dj(x)la mQt
ph~ncuasieuph£ngtrongkhonggiand~ctIlingnchi~u.
D6ivoi bai tmlnphanlOphai lOpvoi vectord~ctIlinghaichi~u,quye"tdinhbien
giil'acaclOp1adliongth£ng(Xemhlnh1.4)
QuatrlnhphanlOpslYd\lngbi9tthuctuye"ntinhdliQcKayd\l'ngnhlisau:
1.Voi x dffcho,Hnhgiatrib~ngso'cuacachambi9tthucchota'tcacaclOp
di (x) =f.1r 2:-1X - ~f.1r2:-1 f.1i+1nP(cJ, i =1,2, ...,12
(1.75)
2. ChQnmQtlOpCjsaochogiatri cuahambi9tthucd/x) 1aIOnnha't.
Tuc la, chQnmQtlOpCjsaochod/x) =max(diCx)),i =1,2,...,1
Trang27
X2
:7 Xl
Hlnh 1.4
Vi du1.2
Gia sam~u2 d~ctIling x E R2 tu hai lOpCl=0 va C2=1com~tdQphanph6ichu§'n
Gauss(Xembang1.1)
Bantll : T~phu~nluy<%ndffduQcchia thanh2 lOpkhacnhau
Tli t~phQpm~unay,tinhvectortrungblnhvamatr~nhi<%pphuongsaichom6ilOp.
GiatritrungblnhduQcuocluQngla:
~ 1 5
[/11="5L:>LdPl,i = 2.2]1=1 .0
(1.76)
0 Ham phan d6i
0 dl(x) =d2(x)
0 0
0 x 0 /x-lOP 10
x 0/ 0 0 - lOp 2
x 0 x
x
Lop 1 Xl X2 Lop
1 2 0
2 2 0
2 3 0
3 1 0
3 2 0
Lop 2 Xl X2 Lop
6 8 1
7 8 1
8 7 1
8 8 1
7 9 1
Trang28
~ 1 5
[Jl2 ="5LXLdP 2,i = 7.2]l~ 8.0
(1.77)
voi xLdpj,iky hi~um~uthui tu lOpj. Doc luQngmatr~nhi~pphuongsaieholOp11a
t =5~1t(XLdp l,i - 111)(XLdP l,i - 111)T= (1.78)
1
[
1- 2.2
] [
2- 2.2
] [
2- 2.2
]
-[ [1-2.2,2-2]+ [2-2.2,2-2]+ [2-2.2,3-2]+ ~
4 2-2 2-2 3-2
[
3- 2.2
] [
3- 2.2
]
1
[
2.8 -1.°
] [
0.7 - 0.25
]
[3- 2.21- 2]+ [3- 2.22- 2]=- =
1- 2 ' 2- 2 ' . 4 -1.0 2.00 - 0.25 0.5
Tu'ong tl;l',
I2 =
[
0.7 - 0.25
]- 0.25 0.5
(1.79)
Ta tha'y, caeuoe luQngeuama tr~nhi~pphuongsai d6i xungla nhunhau,
II =f2 =fi, VIv~yd<;lngtuye'ntinhdongianhoneuacaebi~tthueduQesadvng
di(x)=I1rf-l x-~l1r f-l l1i+lnP(cJ, i=l, 22
(1.80)
Ta tinh
I-I =
[
1.73913040.8695652
]0.8695652 .4347826
(1.81)
ftr f-I =[5.5652174,607826087]
ft~f-l =[19.478261,25.739130]
(1.82)
(1.83)
l~T~-I~ 1
"2JlI L, JlI =2x25.808696 (1.84)
1 ~ T ~-I ~ 1
2. Jl2 L, Jl2 =2x 346.15652 (1.85)
Trang29
va InP(cl) =InP(cz)=InO.5=-0.6931
Cachambil$thuctuye'ntint la
dj(x)=5.5652174xj+6.7826087x2- 22.9043- 0.6931
d2(x)=19.478261xj+25.739130X2- 173.0833- 0.6931
(1.86)
(1.87)
Hamphand6i trongbai toanphanlOphai lOpthaychoquye'tdint bienBayesgiua
hailOpdu'Qcmint hQad Hinh 1.5
d(x)=dj(x) - d2(x)=0
d(x)=-13.9130xj- 18.9565x2+150.1790=0
(1.88)
ho~c X2=-0.7339xj+7.9219
D5thihamphand6iHimQtdu'ongth~ngchiadamdulil$ucuacacm~uthuQcv~hai
lOp.Quye'tdint phanlOpm~u"tren"(d(x)<O)thuQcv~lOpC2va quye'tdint phan
lOpm~u"du'oi"(d(x»O)thuQcv~lOpCj
Tatha'ydingcacm~udulil$ukh6ngch5ngcheolennhauvaytu'dngphanlOpcua
m~uhua'nluyl$nnaycoth~th\fchi~ndu'Qcbdicacbi~tthuctuye'ntinhvacacquye't
dinhbien tuye'ntint.
D€ xay d\fngbi~tthuctuye'ntinhchovi~cphanlOpm~umoi Xli =[4, I]T tatinhcac
gia tri cua hambi~tthucchohai lOpdj([4, I]T) =5.4461va d2([4,I]T)=-51.3416,
gallm~unayvaolOpCjVIdj([4,I]T)>d2([4,I]T).
Voi m~uxj2=[6,7]T, tacodj([6,7]T)=57.2722vad2([6,7]T)=123.2671,gall m~u
nayvao lOpC2VI dj([6,7]T)<d2C[6,7f)
X2
X f.!l
/?X . X .
It x x d(x)>0
0 11
Trang 30
0
0 0 . 0
f.!? 0
Quye'"tdinhbien
d(x)=dl(x) - d2(x)=0
d(x)<0
Xl
Hlnh 1.5
Ta co th~sa dl;[nghamphand6i chobai loanphan!dp,vOiXll =[4, If, d([4, I]T)=
75.5705> 0, khi do gall m§:unay thuQcv€ !dp CI va Xl2=[6, 7]T , d([6,7]T)=-
65.9945<0, khi do gallm§:unaythuQcv€ !dpC2.
Hambi<$tthuctuye'"ntinhclingco th~trlnhbayd:;mg"M~ngnorontuye'"ntinh"
di(x)=w;x+u';o,i= 1,2, ...,1
voivectortrQngluQngduQcdinhnghIala
,,-1
W. =L..., II.I r,
vanguongduQCxacdinhbdi
WiD=-fl; I-I fli +InP(ci)
(1.89)
(1.90)
(1.91)
D6ivoi cacmi€n k€ nhauRj vaRjcho!dpi vaj, quye'"tdinhbiengifi'acac!dpnay
quailh<$voinhautheophuongtrlnhtuye'"ntinh
di(x) - dj(x) =bx+U'ijD
voi
b=(Wi- W)T =(fli I-I -flj I-I)T
(1.92)
(1.93)
WijD=WiD - WiD=-fl; I-I fli +InP(cJ +f1~I-I flj -lnP(c) (1.94)
31
Sieuph~ngchialOpi valOpj nhinchungkhongtn!cgiaovoidu'ongth~ngdiquacac
trungbinhJiiva Jij (DudaandHart,1973).
Neugiasamatr~nhi~pphu'ongsaivacacxacsua"ttiennghi~mb~ngnhaud6ivoi
ta"tcacaclOp,tucla Ii =I (i =1,2, ...,I) vaP(Ci)=P thi co th€ boquaso"h~;lllg
InP(Cj),khi dobi~tthuccodl.lng
T ,,-lIT ,,-1 . 1 2 Id;(x)=Jii L., x--Ji; L., Ji;, 1= , , ...,2 (1.95)
Tatha"yr~ng,vi~cphanlOpd\l'atrendinhthucdtrenIagallmQtd6itu'Qngvoivector
giatrj d~ctru'ngx vaolOpj saochobinhphu'ongkhoangcach(x - Ji;)T I-I (x - Jii)
cuax denvectortrungbinhJij la nhonha"t.Noi cachkhac,vi~cphanlOpd dayla
h!achQnlOpCj saochogiatri x g~nnha"ttheonghlakhoangcachMahalanobis,
tlfonglingvoi vectortrungbinh Jij . Bai toanphanlOpnaydu'QcgQilaphanlOptheo
khoangcachnhonha"tMahalanobis.
Ta co th€ till dl.lngtuyentinhcuabi~tthuctrongbai toanphanlOptheokhoang
cachnhonha"tMahalanobis(khaitri€n khoangcachb~chaiMahalanobis)
d;(x)=Jir I-I x - ~Jir I-I Jii , i =1,2,...,I2 (1.96)
f)~ngthuctrencodl.lnghamtuyentinhcuavectord~ctru'ngx
Thu~ttoancuabaitoanphanloptheokhoangcachnhonha"tMahalanobisdu'Qcxay
dtfngnhu'sau:
Cho trtioc : Vectortrungbinhchota"tcacaclOp Ji j , i =1,2,...,I vachotru'ocgiatri
cuavectord~ctru'ngx.
1.Tinhgiatq b~ngso"cuakhoangcachMahalanobis(x - JiJT I-I (x - JiJ giuax
vavectorgiatritrungbinh
Trang32
2.ChQnlOpCjla d1,1'dmlncualOpth1,1'cS1,1'saochokhoangcachMahalanobisnho
nha't
(x- f.1JT 2:-1(x- f.1i)=min(x- f.1if2:-1(x-f.1J, i = 1,2, ...,1I (1.97)
Ke'tqua: Lop daduQCd1,1'doan
Hambi~tthucse trd nen don gianne'ugia sa ding ma tr~nhi~pph~ongsai b~ng
nhautrongta'tca caclOpva cacd~ctIlingla nhl1ngmftuth6ngke dQcl~p.Trong
truonghQpnay,m6i mftud6uco phuongsaia2va matr~nhi~pphuongsaitrd
thanhmatr~nduongcheo
I =a21 (1.98)
voi I Ia matr~ndonvi dip nxnva IIil =O'2n,I~l =I-2 I , khi do taco di~mgbi~t
thucdongianhon
Ilx- f.1i112 .
dj(x) = 2 +InP(cJ, 1=1,2, ...,1
20'
(1.99)
voi 11.IIIaky hi~ucuachuftnEuclide
Ilx - f.1ill =~(x - f.1i)T(x - f.1i) (1.100)
Taco:
(x - f.1i)T(X - f.1i) =xTx - 2f.1{x+ f.1{f.1i (1.101)
1 T T T
~ dj (x) =---dx x - 2f.1ix +f.1if.1i]+InP(cJ20'
VI s6h"mgxTx lanhunhautrongta'tcacaclOpnennoduQcboqua,khido
(1.102)
1 TIT .
di (x) =2 f.1iX - z f.1if.1i+In P( c,.), 1= 1, 2, ...,1a 20'
(1.103)
Bi~tthuctuye'ntinhnaycothSduQcvie'tduoidqng"mqngnoron"
di (x) = w{x + WiD (1.104)
Trang33
vectortrQnglu'Qngdu'Qcdinhnghiala
1
Wi =~ f.1ia-
(1.105)
vangu'ongtrQnglu'Qngla
1 T
WiD=- 2a-2f.1if.1i+lnP(cJ
(1.106)
Quye'tdinhbien la nhungph~nsieuph£ngdu'Qcxac dinhboi phu'dngtrlnhdiCx)-
dix). D6i vdi cacmi€n k€ nhauRj va Rj cualOpi va j vdi xac suffth~unghi~mIOn
nhfft,cacquye'tdinhbiengiuacaclOpdu'Qcxacdinhtheophu'dngtrlnhtuye'ntinh
di(x)-dj(x)=bx+wijO (1.107)
voi
TIT
b =(Wi - W j ) =_2 2 (f.1i- f.1j ). a-
(1.108)
va
1 T T
wijO=-~(f.1i f.1i-f.1jf.1j)+lnP(cJ-lnP(c j .)2a- .
(1.109)
1.7.4.B~litoaDphan lOptheokhoangeachEuclide nho nha't
Ne'ugia sa cac matr~nhi~pphu'dngsai b~ngnhaud6i vdi tfftca cac lOpva
cacd~ctIlingla nhungth6ngke dQcl~pthltaco I =a-2I. Hdnnua,ne'ucacxac
sufftti€n nghi~mb~ngnhau P(cD =P trongtfftca cac lOpthl co thSbo quaso'h<;lllg
InP(cj).Til do,tacod<;tngddngianhdncuacacbi~tthuc
Ilx - f.1i112 .
di(x)=- 2 ,1=1,2,...,12a-
(1.110)
voi Ilx - f.1ill=~(x - f.1JT(x - f.1J (1.111)
Trang34
Ta tha'yding, vi~cphanlOpdlfa tren cac dinhthlic (J tren gall mQtdO'itu'Qngvoi
vectorgia tri d~ctru'ngx dffbie'tvitolOpj saochoImmingcachEuc1ideIlx- ,ujlltux
Wi vectortrungblnh ,uj Ia nho nha't.N6i cachkhac,vi~cphanlOpchQnlOpCjsao
chogia tri x Ia g~nnha'tvoi vectortIlingblnh ,uj tu'dngling.CachphanlOpnay
du'QcgQiIaphanlOpdlfatrenImmingcachEuc1idenhonha't.
D~ngtuye'ntinhcuadinhthlicphanlOpdlfatrenImmingcachEuc1idenhonha'tIa:
di (x) =,urx - ,ur,ui' i =1,2, ...,I (1.112)
Thu~troanphanlOpdlfatrenImmingcachEuc1idenhonha't
Chotnioe : VectortrungblnhcuacaclOp,ui(i =1,2, ...,1)va giatrix cuavector
d~ctru'ng
1.Tinhgiatri bangsO'cuakhoangcachEuc1idegiuax va trungblnh ,uichota't
ca cac lOp
n
Ilx- ,uill= JL)Xk- ,uk,i)2 , i =1,2,...,I
k=l
(1.113)
2.ChQnlOpCjIa giatri tiendoanlop thlfcslf saochogiatri cuakhoangcach
Euc1ideIanhonha't:
IIx- ,uj II =minllx- ,uiII, i =1,2, ...,I (1.114)
Ke'tqua: Lop dffdu'Qcdlf doan
1.8.Doc hiQngm~tdQxaesua't
C6 th~xay dlfngthutl;lCphanlOpto'iu'uBayessaochoxacsua'tcuasaisO'
phanlOpla nhonha'tkhidffbie'tcacxacsua'ti~nnghi~mP(Ci)valOpm~tdQxac
sua'tc6di~uki~np(xlcj)voi ta'tcacaclOpCj (i =1,2, ...,1).Trongthlfcte',chungta
Trang35
h~unhukhongbie"the"tcacd~cHnhxacsua'tcuacacm~u,cacd6itu<Jngmasl!hi€u
bie"tnaykhongd~ydu,moh6
£)@uoclu<Jngcacxacsua'ti~nnghi~m,chungtadungcongthuc
A nc..
P(cJ =---'-,1= 1,2, ...,1N
(1.115)
voi nCila s6d6i tu<JngtranglOpthu i cuam~ugiOih~n,N la tangs6~cacd6i tu<Jng
trongmau.
TrangquatrlnhBayes,c~nph.Huoclu<Jngm~tdQxacsua'tcodi~uki~np(xlcj).Co
3phuongphapg~ndungdu<Jcs\i'd\lngd€ doclu<Jngm~tdQxacsua't(Dudaand
Hart,1973;Bishop,1995)
I.Phuongphapthamso'(voi gia thie"tC\lth€ v~d~nghamcua hamm~tdQxac
sua't)
2.Phuongphap phi thamso'(khongco gia thie"tC\lth€ v~d~nghamcuaham
m~tdQxacsua't)
3.Phuongphap mJ'athamso'(ph6i h<Jpgiua phuongphap thamso'va phuong
phap phi thamso')
- Phuongphapthamso'gias\i'd~nghamC\lth€ cuahamm~tdQxacsua'tvoi
mQtso'C\lth€ cacthamso'.Vi~cdoclu<Jngtrongphuongphapthams6la uoc
lu<Jngcacgiatrit6iu'ucuacacthamso'.
- Phuongphapphithamso'khonggias\i'd~nghamC\lth€ cuahamm~tdQxac
sua'tmaphaixacdinhhamnaydl!avaocacdli li~udffchao
- Phuongphapn\i'athamso'ph6ih<Jpgiuaphuongphapthamso'vaphuongphap
phi thamso'.Phuongphapnay gia s\i'd~nghamtangquatcua hamm~tdQ
xac sua'tva so'cacthamso'co th€ co.
36
Ngoaira, phlidngphapm~ngndrondIng dliQcdungd~lidc lliQnghamm~tdQxac
sua't(DudaandHart, 1973;Bishop,1995)
1.8.1.Phu'dngphap thams6
Gia sa da:co cac quail satv€ cac d6i tliQngva mftutlidngling co N phffnta
thuQcv€ 1lOp Cj (i =1, 2, ...,1)
x ={xl,x2,...,xN} (1.116)
CacmftudliQcd~ttentheocaclOp,coth~chiat~phQpta'tcacacmftuX theolOp
thanh1t~phQproinhau
XCt,XC2""'XC/' UXi=X
i~I.2 c/
(1.117)
i M6it~phQpXcchuaNjphffntathuQcv€ lOpCjtlidngling,giasacacmftutITt~phQp
I Xc dQcl~pvdinhauvacohamm~tdQxacsua'tcodi€u ki~np(xlcj),(i =1,2, ...,1).
I
Giasad~nghamm~tdQxacsua'tla
p(xIci,BJ (1.118)
voiBi=(BipBi2,...,BimflamQtvectorthams6mchi€u cualOpthui. Vi d\l,ne'uham
m~tdQxacsua'tcod~ngGausschu~n
I
1
[
IT ,,-I
]p(x c;)= /2
1
"
1
1/2 exp-_2(x- pJ L...i(x- pJ(2nY L...i
(1.119)
thivectorthamsO'coth~dliQct~othanhvdivectortIlingbinhPi vacacphffntacua
matr~nhi~pphlidngsaiLi
°i=(P{,LiI'Li2,...,Linf (1.120)
voi Lij la phffntahang thu i cua ma tr~nhi~pphlidngsai Li' Trong phanph6i
chu~n,vectorthams6mQtchi€u chuatIlingbinhvaphlidngsai
Trang37
0,=[::,]
(1.121)
VI oagiasacacm~utrongm6ilOpHioQcl~ptoanbQnenvi<$cUDCluQngcactham
s6cuahamm~toQxacsufitouQctinhtudngtt;l'.U@odngian,taky hi<$up(xI0)
thayVI p(x ICi,Oi)'
Bai toanUDCluQngcacthams6t6i uuco th@ouQcthie'tl~pnhusau:Gia sacho
truDcm~ug8mN ph~ntaXi oQCl~ptoanbQ
X={X1,X2,...,XN} (1.122)
Taclinggiasacacthams6di;mgp(xI0) cuahamm~toQxacsufitcooi€u ki<$noa
bie't.C6ngvi<$cUDCluQngla tlmgiatrit6iuucuavectorthams6 0 mchi€u.
VI cacph~ntaXi oQCl~p theo phan ph6i p(x I0) nenxacsufitoi@mcuaHitcacac
m~utut~pdii'li<$uX ouQcvie'tdUDid(;lngtichcacxac sufit
N
L(O)=p(X I0)=TIp(Xi 10)
i=l
(1.123)
Hamm~toQxacsufitL(O)la hamtheovectorthams6 0 d6ivDit~phQpm~uX oa
cho,noouQcgQilahamhQply cua0 o6ivDit~phQpm~uX
Ham L(0) ouQcchQnla mQttieu chugno@HmUDCluQngt6i uu cua 0, UDCluQng
naygQila UDCluQnghQply ct;l'co(;licua thams6 O. Trongky thu~tnay,gia tr!t6i
uu e cuavectorthams6 ouQcchQno@lamct;l'co(;liham L(O).
£)@tinhtoanouQcd€ danghdn,lfiy logarittt;l'nhien cua ham hQply L(O) va UDC
lu'Qngt6i UUouQcchQnb~ngcachtlmct;l'cti@ucuaham J(O) (tudngling vDivi<$ctlm
evco(;licuaham L(0))
N
J(O) =-lnL(O) =-z)np(xi 10)
i=!
(1.124)
Trang38
Bai toanuocluQngthamsf)tf)iu'uhQply qic d::tiduQcphatbi~unhusau.Gia sti'
chotruocmQtt~phQpduQcgiOih::tng6mN phffntti'dQcl~ptoanbQdf)ivoi lOpdff
cho
x ={xl,X2,...,XN} (1.125)
Cling gia sti'dffbie'td::tngthamsf) p(x Ie) cuahamm~tdQxacsua'tcodi~uki~n.
Ml,lcdichcuabaitoanuocluQngla tlmgiatritf)iu'ucuavectorthamsf)e mchi~u
theotieuchu:1nqic ti~u
N
l(e) =- I)np(xi Ie)
i=l
(1.126)
Giatriqic ti~uhamkhavi cuae duQctlmtut~phQpmphuongtrlnh
al(e)
ael
al(e)
~l(e) =
I
ae:
I
=~
[
- i)np(xi Ie)
]ae ae ~
(1.127)
al(e)
aem
a[-I:lln p(xiIe)1
ael
a[-I:lln p(XiIe))
ae2 =0=
a[- tlnP(X' 10)]
aem
Trang39
Do'ivoid<;lngehu§'nN(I',L) euahamm~tdOxaesufftvoi tham§'nI' vaL, dStlm
vectorthamso'8 taco thSHmmOte6ngthued<;liso'ehou'oelu'c;1nghc;1ply eved<;li
(DudaandHart, 1973;Bishop,1995)
~ 1 ~ .I'=- L,.x'
N ;=1
(1.128)
~ 1~( i A )( i A )TL.=- L,. x -I' x -I'
N i=1
(1.129)
Doc lu'c;1nghc;1ply eved<;lif1 do'ivoi trungblnh I' la trungblnhm~uva u'oelu'c;1ng
hc;1ply eved<;liI euamatr~nhi~pphu'dngsaiL latrungblnhso'hQeeuaN matr~n
(Xi - f1)(xi- f1)T
Doc lu'c;1ngd<;lngehu§'neuahamm~tdOxaesufft
1
[
1 2
]p(x) = 2 1/2 exp -~(x-I')(2nD-) 20"
(1.130)
Do'ivoi m~uvectorx mOtehi~uvoi 2 §'n 8]=I' va 82=0"2ta co d<;lngvectord;:ie
tru'ng8 haiehi~u
e=[:'] (1.131)
Tieu ehu§'nu'oelu'c;1nghc;1ply eve d<;litrong tru'onghc;1Pnay co thS vi€t nhu'sail
1 NIl.
J(8)=- L[-ln2n-B2 +-(x' -8])2]
N i~12 282
(1.132)
Lffy d<;lohameuahamlieu ehu§'nnay theo 8, ta co k€t quau'oelu'c;1nghc;1ply eve
d<;liehocaethamso'
~ 1 ~ .8,=f1=- L,.x'
N i~1
(1.133)
Trang40
eA A2 1~( ; )22 =(5 =- L..x -J1
N ;=1
(1.134 )
Ke'tquanay co th~mdrQngtudngtVd6i voi trudnghQpnhi€u chi€u.
Doc luQnghQply qic d(;licuamatr~nhi~pphudngsai L la uoc luQngch~ch.Tilc la
giatriky vQngcuai: khongb~ngL, vi d\ld6ivoim~umQtchi€u, giatrikyvQng
cua(5 Ia
E[a-]=N -1 (52N (1.135)
dayla uoc luQngch~ch,khi N ~ 00 thluocluQngtrdthanhuocluQngkhongch~ch.
DocluQngkhongch~chcoth~tinhtheocongthilc
~ 1 ~( ; A )( ; A )TL,=-L.. X -J1 X-J1
N -1 ;=1
(1.136)
1.8.2.Phu'ongphap phi thalli 86
Trong cacbai toanthlfcte",d(;lnghamm~tdQxac sua"tkhongduQcbie"ttruoc.
Cac phudngphaptangquathdnd~tlmuoc luQngm~tdQxac sua"thoantoandlfa
trenduli~udaco,d(;lnghamm~tdQxacsua"tclingnhugiatqb~ngsO'cuacactham
s6.Phudngphapm(;lngndronclingduQcdungd~uocluQnghamm~tdQxacsua"t.
NhungphudngphapnayduQcgQila phudngphapphi thamsO'(DudaandHart,
1973;Bishop,1975;HolmstrometaI.,1996)
Y tu'dngt6ngquatv~phu'ongphapphi thalli 86
Gia sU't~phQpm~uduQcgioi h(;lng6m N phffn tU'x ={Xl,X2,...,xN} dQC l~p toan bQ
d6ivoi lOpdachotheohamm~tdQxacsua"tfinp(x).CffnxacdinhmQtUOCluQng
flex)cuam~tdQxacsua"tthlfcp(x)
Trang41
D\,iatrenykhainit$mcuahamm~tdQxacsua"t,coth~tlmduQcxacsua"tmam~u
mdix roi VaGtrongmi~nR duQCchobdi
p =f- p(x)diXER (1.137)
Coth~vie'tgiatrig~ndungcuaxacsua"t
p =f- p(x)di ~ p(x)VXER (1.138)
vDiV Ia th~tichcuami~nR (V =J ifi). D\iatrenxa"pxi nayco th~UDClu'Qngp(x)XER
d6iVDix dacho,bie'txacsua"tP laxacsua"tmax seroiVaGmi€n R.
f)~tinhP, d~utientinhxacsua"tmak ph~ntU'tuN ph~ntU'trongm~useroi VaG
mi~nR duQcchobdi lu~tnhi thuc
p, - N! pk (1- P)
N-k
ktuN - k!(N -k)!
(1.139)
Trungblnhty so'cuacacph~ntU'roiVaGmi~nR laE[kIN]=P vDibie'ndQngquanh
trungblnhla E[(kIN - p)2]=P(1-P)/N. VI phanph6i nhi thucPktirN co dC;lnghlnh
chopquanhtrungblnhkhi N -+ 00 vi v~ycoth~giasU'dng ty so'kIN la u'DClu'Qng
K hK ? ~ K P
k
totn at cuaxacsuat : p~-
N
Tll (1.138)va(1.140)taco,p(x)=p=~NV
(1.140)
(1.141)
D~dambaam~tdQxacsua"tmi~ncobantrensehQitl,1v~p(x)th\icdoihoiquye't
dinhmi~nR phaidungd~n.S\,il\,iachQnmi~nR duQccoi la t6i uune'uthoacac
di~ukit$nmallthu~n.D~utien,d~dambaadingxa"pxi la P ~ ~thl mi~nR c~n
phailOn,tu do dam baaxftpxi P =p(x)VIa dunghon ne'uR (dodoV) Ia nhobon,
Trang42
khid6rex)h~unhuc6d~nhtn3nmi~ntichphan.Docluejngt6tnhfitdoihoiphaitim
mQts6mi~nt6iu'uR.
C6 haiky thu~tco band€ uocluejnghamm~tdQxacsufitdlfatn3nslfh,tachQn
mi~nvatinhs6ph~ntttcuam~uroivaomi~n,d6la cacphuongphap:
. Phuongphapnhanco sd(Kernel-based)
. PhuongphapIan c~ng~nnhfit( K-nearestneighbors)
Trangphuongphapnhanco sa,mi~nRIa c6 d~nh(va VIv~ymi~nV clingc6d~nh)
vas6cacph~ntttcuam~uroi vaotrongmi~nduejcde-mtu t~phejpdli lit%u
TrongphuongphapIanc~ng~nnhfit,k ph~ntttcuam~uduejcxacd~nhvadlfatren
giatr~naymQtmi~nduejcxacd~nhtudli lit%uvoi th€ tichtuongling. Phuongphap
naydaduejcDuda,Hart,1973duafa.
Cahaiky thu~tnay,m~tdQxacsufitsehQit\lv~rex)thlfckhiN --+CX) mienla
mi~nth€ tichnhol~ikhin tangva k tangtheoN.
1.8.2.1.Phu'dngphapKernel- based.ParzenWindow
MQttrongnhlingky thu~tdongiannhfitd€ uocluejngm~tdQxacsufitrex)cho
m~umoix dlfatrent~phufinluyt%nTtrachliaN ph~ntttduejcgQila phuongphap
Kernel- based.
Phuongphapnayc6 d~nhvectorx trenmi~nR va tinhs6ph~ntttcuam~uhufin
luyt%nroivaomi~nnaybangcachsttd\lnghamnhandi:icbit%tc6quailht%voimi~n
nay.Hamnay duejcgQila hamParzenwindow(Parzen,1962;Duda,andHart,
1973).
LvachQnmi~nc6d~nhchom~un chi~ula hinhsieul~pphuongn chi~uc6dQdai
qnh bangh t~ptrungKungquanhdi€m x.Th€ tichcuahinhsieul~pphuongnayla
V =hn (1.142)
Trang 43
C6ngthlic tinhs6 k ph~ntil'cuam§:utu t~phuffnluy~nroi vao tronghlnh sieul~p
phuongnhusau:
_
{
I IYil::::;1/2,i=1,2,...,n
~(y) -
0 N
.
kh'01 ac
(1.143)
Hamnhannaytuonglingvdihlnhsieul~pphuongdonvi (codQdaiq.nhb~ng1)
macacph~ntU't~ptrungtc;tig6c.Di€u dochophepxacdinhm§:udiichocoroivao
tronghlnhsieul~pphuongdonvi kh6ng.Quye'tdinhnayco th~ma.rQngchohlnh
sieul~pphuongcodQdaicc;tnhla h.
Co th~thffydng d6i vdi ph~ntU'Xi,hamnhan ~((x - Xi)/h)=1 ne'uXi roi vao trong
hlnhsieul~pphuongcodQdaiq.nhIaht~ptIlingtc;tidi~mx, giatrihamnhanb~ng
0tc;tinoi khac.
Vdi t~phQpm§:ug6mN ph~ntU',t6ngs6 ph~ntU'cuam§:uroi vao tronghlnhsieu
l~pphuongt~ptrungxungquanhdi~mx duQcchobai
(
i
J
N x-x
k=t;~ ~ (1.144)
Thaythe'phuongtrlnh(1.144)vaophuongtrlnh(1.141),taco
~ 1 N 1
[
X_Xi
)
1 N
(
X_Xi
]p(x) =Nt;Jlf ~ =N hnt;1f/ ~
(1.145)
D€ co udcluQngtrailcuahamm~tdQxacsufft,tadungmQtdc;tngkhaccuaham
nhan~(x).Hamnhanthoahaidi€u ki~n
~(y)~0
Ivy~(y)dy =1
(1.146)
C6 th€ chQnnhanGaussnhi€u chi€u d6i xlingtam
Trang44
IjI(Y) = 1
[
exp_llif
](2nr/2 2
(1.147)
i
voi Ilyll=~yTY , Y =x ~x chotruoctronguocluQngsau
A 1 N
l
-llx-XiI12
)p(x)=(2nr/2hnNt; exp 2h2 =
(1.148)
1 N
((2nr/2hnNLexp -(x-xif(x-Xi) ]1=1 2h2
sO'h<;lngIlx- xiii =((x - Xi)T (x - Xi))1/2 Ia ImmingcachEuclidegiii'ax vaXi
Ky hi~usO'ph~nta lOp thli k la Nk va ph~nta thli i tu t<%phua'nluy~n tu lOp CkIa Xk,i
khido,lOphamm<%tde)xacsua'tcodi~uki~nla
(
k'
J
1 Nk 1 x - X ,1
jJ(XICk)= Ni t;h; IjI hk
(1.149)
voihkIa thamsO'trail lOpphl;lthue)c.£>6ivoi nhanGausstaco
A 1 Nk
[
-llx-xk,iI12
)p(xICk) =(2nr/2h;Nkt;exp 2hf
(1.150)
Vi du1.3
Sa dl;lngl<;libe)dii'li~utuvi dl;l1.2,t<%p hQphua'nluy~ndii duQcchiathanhcac
lOpkhacnhaunhutrongbang1.2
Tangso"ph~ntacuat<%phua'nluy~nlaN =10,voi N1=5ph~nta tronglOpClvaN2
=5 ph~nta tronglOpC2.Xacsua'ti~nnghi~mchom6ilOpduQcuocluQngla
A N,
P(CI) =~ =0.5(i=l,2)N
Trang45
Ban~ :T~phua'nluy~ndffdu<jchiathanh2 lOpkhacnhau
XetmOtm~uvaoX=[8,6]Td6ki6mtra.ChQnthams6trollla h =0.5chocahai
lOp,gii trj cuahamnhiin \"(x-t') d6ivdi mlluhua'nluy~n xI.i tir Wpc[ (0) Iii:
(
1,1
JVOixU =[1,2]\ If/ x-hx =1f/(([8,6]T- [1,2]T)/0.5)=5.54E-58
(1.151)
(
1,2
JVoi XI,2=[2,2]T, If/ x -hx =If/ (([8,6]T- [2,2]T)/0.5)=1.084E-46
(
1,3
JVoi XI,3 =[2,3]T,If/ x-; = If/(([8,6]T- [2,3]T)/0.5)=1.304E-40
(
1,4
JVoi XI,4=[3,I]T, Ij/ x-; =1j/(([8,6]T- [3,I]T)/0.5)=5.92IE-45
[
1,5
JVoi XI,5 =[3,2f, If/ x-hx =1f/(([8,6]T- [3,2]T)/0.5)=3.888E-37
Lop 1 Xl X2 Lop
1 2 0
2 2 0
2 3 0
3 1 0
3 2 0
Lop2 Xl X2 Lop
6 8 1
7 8 1
8 7 1
8 8 r
7 9 1
Trang46
Doc luQngcua m~tdQ xac sua'tvoi m~ux =[8, 6]T cua lOp Cl (0) la
~ 1 N,
[
-llx-XI,iI12
)p(x [CI) =(2nr/2htN1~exp 2hl2 =
(3.48111E-57+6.81356E-46+8.19401E-40+3.72008E-44+2.4426E-36)/7.85=
=3.1111E-37
V~y jJ(x[c])=3.1111E-37
Tu'ongtV,tatinhduQcgiatrinhanvam~tdQxacsua'tchom~uthli'x =[8,6]T voi
m~uhua'nluy~nX2,i tu lOpC2(1)
(
2,1
JVoi X2,1=[6,8]T,IJI x-: = IJI(([8,6]T- [6,8]T)/0.5)=7.1642E-08
(
2,2
JVoi X2,2=[7,8]T,IJI x-; = 1JI(([8,6]T- [7,8]T)/0.5)=2.8902E-05
(
2,3
JVoiX2,3=[8,7]T, IJI x-: = IJI(([8,6]T- [8,7]T)/0.5)=8.6200E-02
[
2,4
JVoi X2,4=[3,1]T,IJI x-: = 1JI(([8,6]T- [8,8]T)/0.5)=2.1356E-04
[
2,5
JVoi X2,S=[7,9]T, IJI x-: = IJI(([8,6]T- [7,9]T)/0.5)=1.3122E-09
Doc luQngcua m~tdQ xac sua'tvoi m~ux =[8, 6]T cua lop C2(1) Ia
~ 1 N2
[
-llx-X2,iI12
)
p(x[c2)= (2 r/2hn Iexp 2 =0.0173n 2N2 1=] 2h
V~y jJ(xlc])=0.0173
Ta tha'ym~tdQxacsua'tcualOpC2IOnhonm~tdQxacsua'tcualOpCl(0.0173>
3.1111E-37)
Trang47
TuongtV,ta tinhduQcm~tdQxac sua'tchom~unh~px =[2, I]T dO'ivoi lOpclla
jJ(x ICj)=0.0392va dO'ivoi lOpC2la fl(x IC2)=4.4323E-58.
Com~tdQxacsua'tvabiStuocluQngxacsua'ti~nnghil$mP(cJ (i =1,2)tacoth€
tinhduQCbil$thucBayesvasaudophanlOpm~unh~pdljatrenlu~tBayes.
Bil$thucdO'ivoim~ux=[8,6]TcualOpclla
T A
d] (x) =d]([8,6] ) = fl(x I c] )P(c\) =3.1111E-37xO.5=1.5555E-37 (1.152)
vacualOpc2la
T A
d2(x)=d2([8,6]) =fl(x IC2)P(C2)=0.0173xO.5=8.6399E-3 (1.153)
VI d2([8,6f) >d]([8,6f) (8.6399E-3 >1.5555E-37)nenrhealu~tto'iu'uBayes,m~u
vaox=[8,6]T seduQcgallcholOpC2
Bil$thucdO'ivoim~ux=[2, I]T cualOpclla
T A
dj (x)=d\ ([2,1] ) = fl(x Ic])P(c\) =0.0392xO.5=0.00196 (1.154)
vacualOpC2la
T A
d2 (x) =d2([2,1] ) =fl(x IC2)P(C2) =4.4323E-58xO.5=2.2161E-58 (1.155)
VI dj([2,lf) >d2([2,lf) (0.00196>2.2161E-58)nenrhealu~tto'iu'uBayes,m~u
nh~px=[2, I]T seduQcgall cholOpCl
1.8.2.2.Phu'dngphapHinc~ngdnnha't: K - nearestNeighbors
MQtphuongphapdongiand€ tiocluQngm~tdQxacsua'tmadQIoncuacac
mi~ncoth€ thayd6iduQcdoIa phuongphapK - nearestNeighbors.Trangphuong
phapnay,sO'm~uk trongmi~nduQccO'dinhnhungnguQcl(;lidQIOncuami~n(va
th€ richV cuami~n)co th€ thayd6iphl,lthuQcvaodii'lil$u.Trangky thu~tuoc
h.iQngm~tdQxacsua'tdO'ivoi m~umoichotruocx, dljatrent~phua'nluyl$nTtra
g6mN ph~ntti'duQcthljchil$nrheacachsau.D~utien,mQthinhc~un chi~uduQc
Trang48
xacd~nhtrongkhonggianm~ut~ptrungt~idi~mx. Saudo,bankinhcuahinhc~u
nayduQcmarQngd@nkhihinhc~unayv~nconchuamQtsacad~nhk m~utut~p
huffnIuy~ndffchaoDocIuQngm~tdQxacsufftjJ(x) duQctinhIa
k
jJ(x)=NV
(1.156)
PhuongphapK - nearestNeighborschotruocmQtUOCIuQngm~tdQric sufftnhung
m~tdQxacsufftnaykhongdungVItichphancuahamm~tdQxacsu(tkhonghQitv
v~khonggianm~u.
Luluphan[upK - nearestNeighbors
Gia sU'chotruoct~phuffnIuy~nTIra g6mN ph~ntaXl, X2, ..., XN duQc d~t ten theo 1
lOp va lOpCjchuaNj ph~nta(i =1,2, ...,1;I:Nj =I). Voi x dffcho,k Ianc~ng~n
nhffttu t~phuffnIuy~nHmduQcd1;1'av o mQtm~udffxac d~nhdu'QcdQdo khoang
cachoSaudo, k Ian c~ng~nnhfftdu'Qc11;1'achQn,sa nithuQCv~lOpCicuam~uduQc
tinh.LopduQctiendoanCjduQcgallchox tu'dnglingvoilOpmanjIa IOnnhfft.
C6th~lienh~giuaphuongphapk Ianc~ng~nnhfftvoi Iu~tphanlOpGauss,gall
chox mQtlOpmaxac suffth~unghi~mco di~uki~nP(cjlx)Ia IOnnhfft.Sa dvng
phuongphapk Ianc~ng~nnhffttac6uocIuQng(xffpxl) m~tdQxacsufftc6di~u
ki~ncualOptrongmi~nchuak Ianc~ng~nnhfft.
nj
p(x IcJ =NVI
(1.157)
vam~tdQxacsufftkhongdi~uki~n
nj
p(x) =N (1.158)
Chungtaclingcoth~HmduQcxffpXlxacsuffti~nnghi~m
Trang49
n.
~ I
P(c;) =N
(1.159)
Tli dinhIy Bayestaco:
P(Ci Ix) =p(x Ic;)P(c;) ~ ni
p(x) ~ k (1.160)
* Luljtphanlap[ancljngUnnhfli( NearestNeighbor)
TrangIu~tphanlOpk Ianc~ngftnnhtt,s6 Ianc~nk b~ng1.Lu~tphanlOpnay
rung duejcgQiIa Iu~tphanlOpIan c~ngftnnhtt, gall rho mQttr,!ngthaimai x mQt
lOp cuam~uIan c~ngftnnhtt tli t~phutn Iuy<$nXl, X2,...,XN.Thu~ttoancuaIu~t
phanlOpIanc~ngftnnhttduejcxaydl;(ngnhusau:
Chotru'oc: MQtt~phutnIuy<$nTtrag6mN phftntii'Xl,x2,...,XNduejcdc1ittentheo
caclOpvarhotruacmN m~umaix.
I.Tinh Ianc~ngftnnhttXjcuax dii rhotli t~phutnIuY<$ndftydudl;(atrenm~u
dii xac dinhdQdokhoangcach(x,Xl)
2. Gan rho x lOpCjIa Ian c~ngftnnhtt rho x
Ke'tqua: Lop dii duejctien Joan
1.8.3.Phu'dngphap miathams6
Trangcacphftntruacchungtadii xetcacphuongphapuacIuejngm~tdQxac
StittdoIa phuongphapthams6vaphithams6.Phuongphapthams6giasii'diibie't
d~ngcuahamm~tdQxacStittcuatoanbQt~pdftli<$uva nhi<$mV\lcuavi<$cuac
IuejngIa Hmcacthams6tincuahamdl;(avaot~pdftli<$udii rho.Mc1ith,!nche'cua
phuongphapthams6Ia vi<$cchQnhamm~tdQxacStitt cuatoanbQt~phejpdft
li<$u(trangkh6nggiandc1ictIling)co khanangkh6ngphilhejpvai mQts6vilngdft
li<$udc1icbi<$t.Phuongphapphithams6rhophept6ngquathoacacd,!nghamm~t
Trang50
de)xacsua'tnhungh~nchS'cuaphuongphapnayla cacthams6cos6chi~uIOndVa
trenco cuadfi'li~u,ngoairaphuongphapnaycondoi hoi sVco m~tcuatoanbe)
t~pdfi'li~utrongvi~cuaclu<;1ngm~tde)xacsua'tcuam~umai.B6i vaim~uIOnthl
kythu~tnaykhongkhathivabi chiph6ibaithaigian.
SVlienkS'tgifi'aphuongphapthams6va phuongphapphi thams6la co sacua
phuongphapmYathams6
1.8.3.1.Xa'pxi ham
Phuongphapnay gia s\i'xa'pXlm~tde)xac sua'tb~ngquailh~tuyS'ntint cuam
hamcosacjJi(X)(Bow, 1992)
m
jJ(x)=g(x,a)=LaicjJi(X)
i=1
(1.161)
vai ai(i=l, 2, ...,m) la cacphftnt\i'cuavectorthams6aERffi
Me)tvi dl,lv~hamco sa la hamdo'ixungxuyentam cd sd (RadialBasisFunction-
RBF)saochome)txa'pXlcuam~tde)xacsua'tcodu<;1cb~nghamtrailvahuanglien
tl,lCdu<;1cdintnghlatrongR
m
g(x,a) = LaicjJi(llx -xiii) =alcjJl(11x-XIII) +a2cjJ2(11x-x211)+...+amcjJm(11x- xmll)
i=1
(1.162)
vai Ilx-xill la khoangcachgiuahaivectortrongRil.Ta tha'ydng, me)txa'pXlham
g(X,a) la me)tquailh~tuyS'ntint cuahamd6i xungxuyenHimco sa cjJi(llx-Xill)
(i=l,2,...,m)t~ptrungxungquanhvectorXi. X6tme)thamxuyentamcosatrailva
huang(me)tnhan)cjJc(llx-xcll)du<;1cxacdint trongkhoang[0, 1]va t~ptrungxung
quanhdi€m xcERn.Hamnayla d6ixungxuyentamcosa.
C6nhi~uxa'pXlkhacnhaud€ IVachQnhamcosanhungthongthuangIa s\i'dl,lng
hamcosabankinhGauss(nhanGauss)
51
~c(llx- xcii)=~c(llx- xcll,O"c)=exp
[
- (x _XJT (x - Xc)
]20"2c
(1.163)
voihaithams6: Xcla HimcuahambanldnhGaussva 0";la thams6chu~nhoacua
nhanGaussva Ilx - xcll2 =(x- xcf (x- xJ la blnhphuongkhofmgcachEuclidegiua
haivectorX va Xc.Tham s6 chu~nhoa 0"la dQl~chchu~ncuaphuongphapchu~n
~
Gaussm~cdlinoduQcuocluQngtheocachkhac,giatrinhanGaussla Immingtit0
toi1.Tilc la Ianc~ncuavectorx latamXccuanhanGaussIOnhongiatricuaham.
Ml;lCdichcuavi~cxtp Xlhamm~tdQxacStittla tlmmQtgiatri t6iuucua vector
thams6theotieuchu~nt6iuudiixacdinh,vi dl,l
lea)= r [p(x)- jJ(x)]2dxJvx (1.164)
Thaythe'mQtxtpxi hamg(x,a)chojJ(x) taco:
m
lea) =Iv [p(x)+Iai~i(x)]
x i=1
(1.165)
D~tlmcacthams6t6iuu,c~nphiiiqtcti~utieuchu~nJ(a),chodC;lOhamriengtheo
ab~ngO.
ol(a) =0
oa
(1.166)
ho~c
ol(a) =O,j =1,2, ...,mGa.
1
(1.167)
Taco
m
o~~~)=2Iv)p(x) - ~ai~i(x)]~/x)dx=0I
(1.168)
m
~ Ivx~j(x)p(x)dx= Ivx~/x)[~ai~i(x)]dx
(1.169)
Trang52
Theod~nhnghla, Lxq)/x)p(x)dxla mQtgia tr~ky v<;mgE[q)/x)] cuahamq)/x)
Sapx€p l~icacphuongtrlnhlIen,t~phQpmphuongtrlnhtuy€n tinhcuacactham
s6t6i u'uaI, a2,...,am
m
1>; Lxq)/X)q);(x)dx=E[q)/x)], j =1,2,...,m
i=1
(1.170)
~
f)~tlmnghi~mcuah~phuongtrlnhlIencgnphaibi€t m~tdQxacsua'tp(x).Co th~
lingdvngxa'pXlsailday
E[q)/x)]=Lxq)j(x)p(x)dx~ ~q)j(Xk),j= 1,2,...,m
(1.171)
Voi N la s6cacphgntucuam~u,taco
m 1 m
LP; fvxq)/x)q);(x)dx=- Lq)/Xk), j =1,2, ...,m;=1 N k=1 (1.172)
T~phQpmphuongtrlnhtuy€n tinhcoth~giaiduQcd6ivoi m hamcobanq)/x).
N€u hamcosatn,1'cchuc1nduQcsudvng,thoadiSuki~nsail
{
li=i
r q)(x)q);(x)dx= '. .
Jvx J 0, 1::f::.J
(1.173)
thltaco uocluQngto'iu'ucuacacthamso'
aj =~Iq)/Xk),j =1,2,...,m
N k=1
(1.174)
~N- ~ [M~N ,j, ( N+1)]a. - 1Va. +'f. X
J N+l J J (1.175)
voia; va at! la cach~so'to'iu'ud~tduQcchoN vaN +1phgntum~utuongling.
Bi€t duQcgiatr~cuathamso'to'iu'uvahamcosatacoxa'pXlhamm~tdQxacsua't
m
flex) =La;q);(x)
;=1
(1.176)
53
ThuatloanxdJ2..xl hammatdoxacsudt
Ch t '~(j~ T" h ,.:' 1 " T ;, N h;, ? 1 2 N b
' ki h h' ?0 ru, c: <;lpuan uy~n ITagom P an tux , x , ...,x . m an n amcoso
tnjcchu~ntPi(X),i =1,2,...,m vacacthams6
1.Tinh u'dclu'<;jngcuacacthams6~n
Gj =~ftPj(Xk), j =1,2,...,m
N k=!
(1.177)
2.D;;mgmahinhcuahamm~tdQxacStittlahamxtpXl
m
jJ(x)=LGitPi(X)
i=!
(1.178)
Ke'tqua:C6m~tdQxacStittcuacacm~u
*M6hinhh6nh(Jp
Mahinhh6nh<;jpdu'<;jcdl;(atrenquailh~tuye'ntinhcacthams6cuahamm~tdQxac
Stittdii bie't(vi dl,lm~tdQxac Stittchu~n)du'<;jcphanvungtrongmQtvungcuadii'
li~u(Hinltonetat. , 1995;HastieandTibshirani,1994,1996).MQtmahinhh6nh<;jp
coth€ laphanph6ih6nh<;jptuye'ntinhsauday(Duda,Hart,1973)
m
p(x)=p(x I0) =p(x IB,P) =LPJx IBJ~
i=!
(1.179)
voiPi (X IBJ la thanhph~nm~tdQthlii voivectorthams6Bp mla s6thanhph~n
m~tdQ vaPi la thams6h6nh<;jpthlii. B vaP la kyhi~uthanhph~nm~tdQvector
thams6vavectorthams6h6nh<;jptu'ongling.0 lakyhi~uvectorthams6baog6m
()vaP. B€ dongiantrongky hi~u,tasematamahinhh6nh<;jpla
m
p(x)=LPJx)~
i=!
(1.180)
Trang54
Phanph6ih6nhQptuye'ntinhd trentu'ongtt;(dinhnghlacuam~tdQxac sua'tkhong
di~uki~n.Th~tv~y,taxetPi la xac sua'ti~nnghi~mma m~ux du'Qct6ngquathoa
bdithanhph~nm~tdQthil i Pi(X).Hon mIa,taco thS1t;(achQnPi thoa
m
IF; =1
;=1
(1.181)
O-s,P-s,l
I
vagiasacacthanhph~nm~tdQdu'Qchu5nhoa
LxPi (x)dx =1 (1.182)
khidoco thSsosanhvoi lOpm~tdQxacsua'tco di~uki~n.MQtcacht6ngquat:
£)~utien,mQtthanhph~nm~tdQthil i du'Qc1t;(achQnng~unhienvoi xacsua'tPi.
Saudom~ux du'Qct6ngquathoatheost;(1t;(achQnm~tdQxac sua'tPi (x)
H~uhe'tmo hinh h6n hQpm~tdQchu5nGaussdu'Qcsa d\lngcho mo hinhm~tdQ
xacsua't.Mo hinhh6nhQpdongvaitrc>quailtrQngtrongvi~cthie'tke'bankinhco
sdcuacacm~ngnoronvast;(h6nhQpcuacach~chuyengia.
1.8.3.2.Khoang each giua cae m~t d{)xac sua't.Khoang each
Kullback- Leibler
M\lc dich cua cac thut\lc u'oc1u'Qngm~tdQ1atim mQtmo hinhm~tdQcang
g~nm~tdQ tht;(ccang t6t. Ta co d~ngdinh nghla chinh xac cua khoangcach
d(p(x),jJ(x))giua hai m~tdQ: m~tdQxac sua'tht;(cp(x) va u'oc1u'Qngxa'pXl flex)
cuano. La'y logaritW nhiencuahamhQp1y L =p(X) =IT:1P(Xi) d6i voi N ph~n
. 1 2 N 1,tux,x,...,x a'
N
-till =- Ilnp(xi)
;=1
(1.183)
Trang55
D6ivoimahlnh fl(x),trungblnhcualogaritcuahamh<jply du<jcoinhula giatri
kyvQng
E[-lnL]=-lim~ flnfl(xi)=- i p(x)lnfl(x)dx
N-->ooN i=] Vx
(1.184 )
D6ivoim~tdQxacsua'td6ngnha'tp(x)=fl(x),giatqkyvQngla
- r p(x)lnp(x)dxJvx (1.185)
laentropycuap(x)
Thaythe'entropynaytubiguthucky vQngE[-InL] taco dQdokhoangcachgiua
p(x) va flex)
d(p(x),flex))=- r p(x) In flex)dx
Jvx p(x)
(1.186)
du<jcgQilakhodngeachKullback- Leibler(Kullback,1959)