BẤT ĐẲNG THỨC BIẾN PHÂN VÀ ỨNG DỤNG
ĐOÀN HỒNG CHƯƠNG
Trang nhan đề
Mục lục
Phần mở đầu
Chương1: Các kiến thức chuẩn bị.
Chương2: Bất đẳng thức biến phân.
Chương3: Ứng dụng.
Kết luận
Tài liệu tham khảo
19 trang |
Chia sẻ: maiphuongtl | Lượt xem: 1922 | Lượt tải: 3
Bạn đang xem nội dung tài liệu Luận văn Bất đẳng thức biến phân và ứng dụng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chu'dng1
Cae ki~nthue ehu~nbi.
Chuang1 : Cacki@nthucchu/inbi Lu~n van thf;Lc81Toan hQc
Trang chuangnay chungt6i nhl1c19>imQt86khai ni~m,tfnh ch§,tcua t~p
16i,ham16i,hamdondi~u,anhX9>da trt dU<;1c811d\mgtrang1u~nvan.
1.1 T~p 16i.Ham 16i
1.1.1 T~p16i
Dtnh nghia 1.1.1.Cia SV:X la kh6nggiantuytnlink. M c X dur;cgQila tf)p
affinentuthoaman,\la,bE M,\la E R, aa+(1- a)bE M.
Tf)paffinechV:aOx dur;cgQila kh6nggian concuaX.
Dtnh nghia 1.1.2. Cia SV:X la kh6nggiantuytn link vax, y EX. Tf)ph{fp
[x,y]:={zEX/z=ax+(l-a)y,aE [0,1]}
dur;cgQila do(lnthdng[x,y].
Dtnh nghia 1.1.3.Cia SV:X la kh6nggiantuytnlink. M c X dur;egQila tf)p
l6i ntu thoaman,\la,bE M, Va E [0,1],aa+(1- a)bE M.
Dtnh nghia 1.1.4. Cia SV:X la kh6nggiantuytnlink. Phitn hamf : X -7 R
dur;cgQilaphitnhamtuytnlinh ntu thoaman,\Ix,y E X, a,/3E R,
f(ax +/3y)=af(x) +[3f(y).
Dtnh nghia 1.1.5.Cia SV:x, Y lacackh6ng iantuytnlink.AnhX(lT :X -7 Y
dur;egQila anhX(ltuytnlink ntu thoaman,\Ix,y E X, \la,/3E R,
T(ax +[3y)=aT(x)+[3T(y).
Dtnh ly 1.1.1.Cia SV:x, Y la caekh6nggiantuytntinh,A, B la caetf)p16i
tmngX va{Ao}la hQtf)pl6i biukztmngX, 1 la mOtsf;th'ljCbiukz.Kh-id6
(i) noAolatf)pl6i tmngX;
(ii) A +B, 1A la cactf)pl6i tmngX.
Dtnh 1y1.1.2.Cia SV:X, Y la caekh6nggiantuy€n linh,T : X -7 Y la anhX(l
tuy€ntinh,A la tf)p16itrongX vaB latf)pl6i trongY. Khi d6T(A) la tf)pl6i
tmngY, T-1(B) la cactf)pl6i trongX.
Trang3
" ?
Dinh nghla 1.1.6. Gid s'u:X la khonggian tuyentinh. x E X du(JcgQila to
h(Jptuytn tinh l6i cuaXl, X2,...,XmE X ntu tOntr;liAI, A2,...,Am> o th6aman
2:7:1Ai = 1 vaX = 2:7:1AiXi.
Dinh ly 1.1.3.Gidsv:X la khonggiantuytntinh.A c X latiJ-plOintuvachi
ntuA ch{tamQitifh(Jpl6i cuacacdiemdla A.
Dinh nghla 1.1.7. Gid sv:X la kh6nggiantuytntinhvaA eX. TiJ-plOinh6
nhdtch71aA du(JcgQila baal6i cuaA, ki hieulacoA.
Nh{inxet 1.1.1. TiJ-pA lOikhivachikhicoA=A.
Dinh nghla 1.1.8.Gid sv:X la kh6nggiantuytntinhvaA eX. TiJ-plOi,dong
nh6nhdtch71aA du(JcgQila baalOidongcuaA, ki hieucoA.
Nh{inxet 1.1.2.coA=coA.
1.1.2 Non 16i
Gia 811X la khonggiantuy@ntfnh.
Dtnh nghla 1.1.9.
(i) TiJ-pK c X dur;cgQila non(cone)ntu,Vx E K, VA> 0, AXE K.
(ii) TiJ-pK c X dur;cgQila non co dinh (pointedcone)ntu K la nonkhongch71a
batki du()ngthiingnaG.
(iii) TiJ-pK c X dur;cgQila non lOintu K dOngthai la non va t(lpl6i.
Dtnhly 1.1.4.
(i) TiJ-pK c X la nonl6i khivachikhi,VA>0, AK c K vaK +K c K;
(ii) TiJ-pK c X lanoncodinhntudOngthaiK lanonvaK n (-K) ={Ox}.
Dtnh ly 1.1.5 (Dtnh ly Carathedory). Gid sv:Y c X la tiJ-p affine co s6
chi€u la n vaE c Y. Khi do vdi mQiX E coE, tOntr;likh6ngquan + 1 diem
Xl,X2,...,Xn E E va tOntr;licacs6 AI, A2,...,An > o th6aman 2:~=1Ai =1 va
X =2:~=1Aixi'
Dtnh nghla 1.1.10. Gid sv:A c X. Kh6nggianconnh6nhdtcuaX, ch71aA
dur;cgQila baatuytn tinh cuaA, ki hieuspanA.
Trang4
D!nh nghla 1.1.11. Cia 8V:A c X, Xo E A vaX* la khonggian a6i ng6:uar,Li86
cua X. Khi do t(ip
NA(XO):= {yE X*/(y,x - xo)< 0,Vx E A} (1.1)
du(JcgQ'ila nonphaptuytn (normalcone)euat(ipA tr,LiXo.Ki hi~u(y,x) la gia
tri euaphitn ham y E X* tr,Lix EX. ~
MiJi Y E NA(XO) du(JegQi la phap tuytn eua t(ip A tr,LiXo.
Nh~n xet 1.1.3. Ntu A la t(ip 18ith1,non phap tuytn NA(XO) la t(ip fiJi, dong.
D!nh nghla 1.1.12. Cia 8V:A c X lat(ip 18i, khae cPo
(i) T(ipA du(JegQi la liti xa theophudngliti xa d E X, d -#Ox ntu thoamiin,
VA >0,A +Adc A.
(ii) T(ipgiJmcaephudngliti xad vaOx du(JegQila non liti xa euaA, ki hi~u0+A:
a+A:= {dE X/A +Adc A,VA>O}. (1.2)
1.1.3 Ham 16i
Gia811X la kh6nggiantuyt!ntfnh,D c X vahamf : D ~ R U {::l:oo}.
D!nh nghla 1.1.13. Ta ki hi~u
damf := {xE D/ f(x) <+oo};
epif:= {(x,1) ED x R/f(x) < 1}.
D!nh nghla 1.1.14. Hamf du<!egQila hamehinhthudng(proper)trenD ntu
damf -#cPva f(x) >-00, Vx E D.
D!nh nghla 1.1.15.Ham f du(JcgQila hamliJi (tudng71nglam) trenD ntu epif
la t(ipliJi (tudng71ngt(iplam) trenX x R.
Nh~n xet 1.1.4. Nt'uf la ham18itrenD th1,damf la tap liJi trenX.
D!nh Iy 1.1.6. Cia 8V:f la hamchinhthudngtrenD. Khi dof la ham18itrenD
ntuvachintu
VXI,X2E D, VA E [0,1],f(AX +(1- A)Y)<Af(x)+(1- A)f(y). (1.3)
Trang 5
Dinh ly 1.1.7(B§.t diing thuc Jensen). Cia sitf la hamchfnhthuiJngtrenD.
Khi dof la ham l6i tren D n€u va chi n€u, VX1,X2, ..., Xm E D, VAl, A2, ..., Am >
0: 2::1 Ai = 1,
m m
f(L AiXi)<LAif(Xi).
i=l i=l
(1.4)
~
Dinh nghia 1.1.16.Cia sitD c X la tt)pl6i,f : D -+ R vaXoE D.
(i) Hamf durjcg9i la l6i tq,iXon€u, Vx E D, VA E [0,1],
f(AX+(1- A)XO) <Af(x)+(1- A)f(xo). (1.5)
(ii) Hamf durjcg9i la l6i ch(j,t(strictly convex)tq,iXo n€u, Vx E D, x -=IXo,VA E
[0,1],
f(AX+(1- A)O) <Af(x)+(1- A)f(xo). (1.6)
(iii) Ham f a'Ltrjcg9i la l6i mq,nh(stronglyconvex)twi Xo n€u, Vx E D, VA E
[O,l],:3p>0 th6aman,
f(AX+(1- A)XO) <Af(x)+(1- A)f(xo)- pA(l - A)llx- xo112. (1.7)
Ham f durjcg9i la l6i ch4t (tuangitng l6i mq,nh)tren D n€u h~thitc (1.6)
(tuang itng (1.7))th6a man vdi m9i Xo ED.
Dinh nghia1.1.17.Ciasitf: x -+ RU {:!:oo}va a E [-00;+00]. Cac tt)p
So::= {x E X/f(x) <a};
S~:={xE X/f(x) <a};
durjcg9i la cactt)pmitccuahamf.
Dinh ly 1.1.8.Ciasitf :x -+ R U {:!:oo}va a E [-00;+00].N€u f la haml6i
thi m9i tt)pmitccuaf codq,ngSo::={xE X/f(x) <a}vaS~{xE X/f(x) <a}
la cactt)pl6i.
Nh~nxet 1.1.5.N€u m(Jthamf :X -+ R U{:l:oo}co caett)pmiteSa vaS~la
caett)pl6i thi ehuaehilef la haml6i.
Trang6
Vi d\l 1.1.1. Cia sV:X = R, f : x -+ R U {::1::00}xae dink nhu sau f(x) =
Ilxll,\Ix E R \ {O}va f(O) = +00. Khi d6 hamf khangl6i nhungcaet(ipmitela
caet(ip l6i.
Dtnh nghia 1.1.18.Cia SV:f :x -+ R U {::1::oo}. Hamf du<JegQila t7/al6i tren
X neumQit(ipmiteSa la t(ipl6i.
Dtnh Iy 1.1.9.Hamf : X -+ R U {::1::00}lahamt7/al6i khivachikhi,
\lXI,X2E X, V)..E [0;1],f()..XI+ (1- )..)X2)<max{f(xI),f(X2)}'
1.1.4 Ham lien hQp
Cia s11X 1akhanggianvectcJtapa 16idtaphl1cJng,X* 1akhanggiand6i ngau
tapacuaX vahamf :X -+ R.
Dtnh nghia 1.1.19. Ham f* : X* -+ R xaedinkbdi
f*(x*) :=sup{(x*,x)- f(x)},
xEX
(1.8)
du<JegQi la ham lien h<Jpeua hamf.
Tli dtnhnghla(1.1.19)suyra
f**(x*):= (f*(x*))*= sup{(x*,x)-f*(x*)}.
x' EX'
(1.9)
M~nhd~1.1.1.
(i) f* la hamd6ngyeu*val6i trenX* .
(ii) f(x) + f*(x*) > (x*,x)\lx E X, \Ix* E X* (BatddngthiteYoung-Fenehel).
(iii) f**(x)<f(x),VxE X.
Dtnh Iy 1.1.10 (Dtnh Iy Fenchel-Moreau). Cia SV:X la khanggianvecto
tapal6idiaphuongHausdorffvaf :X -+[-00,+00].Khi d6f** =f khivachi
khif la haml6i d6ngtrenX.
Trang7
1.1.5 Topoy€u. Topoy€u*
D!nh nghia 1.1.20.
(a) Cia sV:X lakhanggiantuy€nfinkvap :X ~ R. Hamp du(Jeg9ilanv:aehudn
trenX n€u p thoaman caedi€u ki~n
(i) p(x)>0,'\IxE X;
(ii) p(ax)= Iiallp(x),'\IxE X, Va E R;
(iii)p(x+y)<p(x)+p(y),'\Ix,y E X.
(b) Cia sv:X la khanggiantuy€n finkva(foJ la h9caenv:aehudntrenX. Cdsd
tane{)neuaOx, ki hi~u;3(Ox),la h9caet{)pcod(lng
n f;;l( -E; E) := {x E X/llfa(x)11<E,'\IaE I},
aEI
v(jiE la m(5ts6 dudngvaI la t{)philu h(ln.
?
TapatrenX sinh bCfih9;3(Ox)du(Jeg9i la tapasinh bCfih9 nv:aehuanf(a).
Gia sti (X, 11.11)la khanggian dinh chu§,nva X* la khanggiand6i ngautapa
cuaX. Vdi moi f E X* ta dinh nghia
P!(x) := IIf(x)ll, '\IxE X.
?
Khi d6hQ(P!)!EX*la mothQcaentiachuantrenX.
TucJngtlj vdimoix E X, hQ(qX)XEXxacdinhbdicangthuc
qx(f) := IIf(x) II,'\If E X*,
lamOthQmlachu§,ntrenX*.
D!nh nghia 1.1.21.
a) Cia sv:(P!)!EX* la m(5th9 caenv:aehudntrenX.
nv:aehudn(P!)!EX* du(Jeg9i la tapay€u trenX.
b) Cia sv:(qx)xEX la m(5th9 caenv:aehudntrenX* .
mJ:aehudn(qX)XEXdu(Jeg9i la tapay€u* trenX*.
TapatrenX xaedinkbdih9
TapatrenX* xaedink bCfih9
D!nh ly 1.1.11.Cia sv:(X, 11.11)la khanggiandinkehudn.
Trang 8
Chl1dng1 : Cacki~ntlH1cchuiinbl Lu~nvanth~c81ToanhQc
(i) Tapaytu trenX la tapaxac dink bdicdsd fan cQun{3cuaOx, vdi13la h9 cac
tQuP co dr,mg
U:= {x E X/llfi(X)11a}. (1.10)
(ii) Tapaytu*trenX* la tapaxac dink bdicdsd fan cQun{3*cua0x*, vdi13*la h9
cac tQuPco dr,mg
V := {f E X* /IIf(Xi)11O}. (1.11)
(iii) Tapaytu trenX la tapaytu nhatmam9ianhX(Lf E X* vanlient'(tc.
(iv) Cia S71vdimoix EX, phitnhamx(.) xacdinktrenX* bdicangth11c
x(f) :=f(x),"If E X*.
Khi dox(.) la m(Jtphitn hamtuytntinh,lient'(tctrenX theotapachutln.Ntu
tad6ngnhatmoix E X vdimoiphitnhamx(.) tudng11ngthiXc X**. Vdicac
girlthitt(jtrentaco,tapaytu*trenX* latapaytunhatmam9ianhX(Lx(.)van
lient'(tc.
Dinh ly 1.1.12.
(i) DayBUYr(Jng(fa) C X* h(Jit'(tytu*vi f E X* khivachikhi,"IxEX,
(fa,x)-+(f,x),
vdi(fa,x) va(f, x) tudng11nglagiatri cuafa vaf t(Lix.
(ii) DayBUYr(Jng(Xa)C X h(Jit'l)ytu vi x E X khivachikhi,Vf E X*,
(f,xa)-+(f,x).
1.1.6 Dinh ly Hahn- Banach v~tach t~p16i
Dinhly Hahn-Banachla illQttrongbadinhly cdbancuagiaitichham.C6
nhi§ud:;tngphatbi~ukhacnhauelmdinh ly nay.ddaychungt6i trlnhbaydinh
lyHahn- Banach0 d1;1ngtachti;tp16i.
Dinh nghia 1.1.22. Cia S71X la khanggian tuytn tinh. TQupH ~X du(jc99i la
m(JtsieuphdngtrongX ntu H la tQuPaffineldnnhattrongX, nghiala khangco
tQuPaffinenaGkhacX mach11ahdnH.
Trang9
/ ?
Dinh ly 1.1.13.Cia sitX la m(jtkhanggiantuyentinhvaH la m(jtsituphang
tmngX. Khi d6t6ntr;Lim(jtphitnhamtuytntinhf trenX vam(jtsf;th7/ea sao
rho
H ={xE X/(f,x)= a},
vdi(f, x) la giatri euaf tr;Lix.
Daolr;Lintuf la m(jtphitnhamtuytntinhkhae0 trenX vaa E It th'it(ip
K:= {xE X/(f,x)= a},
la m(jtsituphdngtrongX.
Dinh ly 1.1.14.T6ntr;Lituangilng1-1 giftat(ipcaesituphdngkhangehila0 tren
X vacaephitnhamtuytntinhf E X*\{Ox}saGehoH ={xE X/(f,x)= I}.
Gia sa X la khanggianvectatapa.Khi d6dinh15'saula di;ictn1ngchocae
sieuphiingvakhanggiand6ingautapaX* cuaX.
Dinh ly 1.1.15.CiaS'U:X lakhang'ianvectotapal6idiaphuong.Khi d6
(i) Situ phdngH = {x E X /(f,x)=a}lat(ipd6ngkhi va chikhif lien t7,lC,
nghialaf E X*,.
(ii) SituphdngH (xacdinhnhua (i)) khangd6ngkhivachikhiH trum(ittmng
X.
Dinh ly 1.1.16(Dinh ly Mazur). Cia sitX la khanggianvectatapal6i dfa
phuong,A c lat(ipl6i,ma,khaecPvav lat(ipaffinethoamanV n A =cPo Khi
d6t6ntr;Lisituphdngd6ngH ehilaV saorhoH n A =cP,nghiala
3f E X*, 3/,E R, (f, v)=/,'\IvE V,(f, x)< /','\IxE A.
Dinh nghia 1.1.23.Cia sitX la khanggianvectatapal6i dfaphuongvaA, B
la cact(ipconcuaX.
(i) T(ipA vaB dUr;fe99ila tachdUr;fCntu t6ntr;Liphitnhamf E X* saGrho
sup(f,x)< inf(f,x).
xEA xEB
Trang 10
(ii) T~pA va B d'u(Jc99i la tachch(jtn€u t6n tr;Liphi€n hamf E X* saocho
sup(f,x)< inf(f,x).
xEA xEB
B6 d~1.1.1.Cia SV:X la khanggianvectdtapal6i diaphudng,M c X lat~p
mdvaf E X*\{Ox}.Khi d6f(M) lat~pmd.
~
D!nh ly 1.1.17(D!nh ly tach, d!nh ly Eidelheit). Cia SV:X la khanggian
vectdtapal6i diaphudngX vaA c X, B c X la cact~pl6i,khaccj; thoaman
di€u ki~nintA -=I- cj; va(intA)nB =cj;. Khi d6A vaB tachdu(Jc.
Chitngminh. Vi A la t~p16ilien intA la t~p16i.Vi (intA) n B = cj; lien t~p
U :=intA - B la ti;i,pm0,kh6ngclItiaOx.Theodinhly Mazur,t6nt1;tisieuphllng
d6ngH clItiaOx saoclIo (intA - B) nH = cj;. Gia S11phi@nham f E X* va
f-l(OX) =H. Vi intA - B la t~p16ilien f(intA - B) la khoangmdkh6ngclItia
O.Do d6
f(intA - B) <0;
sup f(x) < inf f(x).
xEintA xEB
Vi intA tru m~ttrongA va f lient\lClienSUPxEintAf(x) =SUPxEAf(x). V~y
sup <inf f(x). D
xEA xEB
?
D!nh nghia 1.1.24. Cia SV:X la khanggianvectdtapa,A c X vaXoE A. Diem
Xo du(Jc99i la ditfmt7/a(supportpoint) cua t~pA n€u t6n tr;Liphi€n hamf E X*
vas6th7/c'"'Ithoaman
(i) f(xo) ='"'I;
(ii) f(x) <'"'I,\:IxE A va :3xE A, f(x) < T
Khi d6siev,phiingH := {x E XI (f, x)= '"'I}du(Jc99i la sieuphiingt7/a(support
hyperplane)cua t~pA tr;LiXovaf au(Jc99ilaphi€n hamt7/a(supportfunctional)
cuat~pA tr;LiXo.
D!nh nghia 1.1.25. Cia SV:X la khanggianvectdtapavaX* la khanggiand6i
ngaucuaX. Phi€n hamS :X* ~ R du(Jc99ilaphi€nhamt7/a(supprotfunction)
cuat~pA n€u rOH.IJ.H.TlJN~~IEN
S(f) = Sup(f, x),\:IfEX*. i IH!! \!!E~:xEA ":'-.
L ~l400Trang11
D!nhly 1.1.18.Cia S'l1X la khanggianvectatOpal6i diaphuong,UjpA c X
l6i,d6ngc6intA=IcPo Khi d6m9idiembiencuaA d€u ladiemt7/a.
D!nh ly 1.1.19. Cia S'l1X la khanggian vectdtOpal6i dia phuongva A eX,
B c X la cact(ip l6i, d6ngthoamanB la t(ipcompactva An B = cPoKhi d6A
vaB tachchijI
~
Ch71ngminh. GQi(3laeoSdIane~nelmOx,(3g6meaet~p16ituy~td6ivama.Gia
S11,\IV E (3,(A+V)nB =IcPo Khi d6hQ{(A+V)nB IV E (3}lahQcact~pcompact
c6tfnh ch~tla mQigiaohuu h1;1nd~ukhaccPoSuy fa nVE,e(A + V) n B =IcPo Do
d6t6n t1;1iXoE B va XoE A + V c A + 2V,\IV E (3.Suy ra Xola di~mt1,lcuaA
va XoE A (do A la t~pd6ng).Tli eaedi~utren suy ra XoE A n B (mauthuan
voigiiithi@tAn B =cP). Vi;iyt6n tC;LiV E (3SeWcho (A +V)nB = cPo
ChQn U =~Vthl(A+U)n(B+U)=cPoTh~tv~y,n~uc6x E (A+U)n(B+U)
thl t6n t1;1ia E A, b E B va VI,V2E V saocho x = a + ~VI= b+ ~V2'Suyfa
b=x - ~V2=a+~VI- ~V2E (A+V)nB (mauthuanv6i(A+V)nB =cP).2 2 2
Vi;iyhaiti;ipA +U vaB + U thoamancacgiii thi@tcuadjnhIf tachEidelheit,
dod6A +U vaB +U tachdl1<;c,nghlala t6nt1;1iphi~nhamJ E X* saocho
Sup(J, x)< inf (J, x).
xEA+U xEB+U
Do d6
sup(J,x)<inf(J,x). D
xEA xEB
Nh~n xet 1.1.6. Cia thiefv€ tinh compactcuaB la canthiefngaycakhi X la
khanggianhiJ:uh(ln chi€u.
Vi dl,l 1.1.2. Cia S'l1X = R2;A := {(x,y) E R2/y > .!.;x > O} va B :=x
{(x,0)Ix E R}. Khi d6 m9i gia thietcua dinh ly (1.1.19)d€u thoa tril gia thief
compactcuaB. Hai t(ipA va B trongtrudnghrjpnaykhangtachdurjc.
H~qua 1.1.1.Cia S'l1X la khanggianvectdtapa16idiaphuong.Khi d6 ta c6
cackhdngdinhsa'u.
(i) M9i t(ip l6i d6ngtrongX lagiaocua,tatcdcacn'l1akhanggiand6ngch71an6.
(ii) M9i t(ip16id6ngtrongX d€u la t(ipd6ngyeu.
Trang12
1.2 D~oham cua anh x~
1.2.1 D~oham theo huang
Djnh nghia 1.2.1. (Xem [23))Gid S71X la khonggianvectdva (Y, 11.11)la khong
? /
giandink chudn,A c X la tt;ipkhacc/J,XoE A, hEX vaanhxq,f :X ~ Y. Neu
gidihq,n
f' (xo)(h) := Hm ~ (f(xo+Ah)- f(xo)),>'---+0+/\ (1.12)
t6ntq,ithi f'(xo)(h) du(Jc99i la dq,ohamtheohuangcuaanhxq,f tq,iXotheo
huangh. Ntu vdim9ihEX gidihq,nf'(xo)(h) luont6ntq,ithif du(Jc99ila khd
vi theohuangtq,iXo.
Djnh ly 1.2.1. Gid s71X la khonggianvectd,A c X la tt;ipl6i, khacc/Jva
f:X~R.
(i) Gids71XoE A la diim c7/ctiiu cuaf trenA. Ntu anhxq,f codq,ohamtheo
huangtq,iXotheom9ihuangx - Xo,vaix E A, th1,
f'(xo)(x- xo)>0,\/x E A. (1.13)
(ii) Ntu anhxq,f la haml6i vacodq,ohamtheohuangtq,iXoE A theom9ihuang
x - Xo,vdix E A va
f'(xo)(x - xo)>0,\/x E A,
thiXola diim c7/ctiiu cuaanhxq,f trenA.
Ch(cngmink.
(i) Tv gia thi§t ant X<;1f co d<;1ohamtheohudngt<;1iXotheomQihudngx - Xo
BUY ra vdi moi x E A, ta eo
f'(xo)(x - xo)= Hm~ (f(xo+A(X- xo))- f(xo)).>'---+0+/\
Do Xola di@meveti@ueuaf trenA lienvdiA >0dulito, taco
f(xo+A(X- xo))>f(xo).
V~y
f'(xo)(x- xo)>0,\/x E A.
Trang13
(ii) Tli f la ham16isuyra v6i mQix E A,v6imQiA E [0,1],ta co
f(xo +A(X- xo»= f(AX +(1- A)XO)<Af(x)+(1- A)f(xo).
Do do
1
f(x) > f(xo)+A(f(xo+A(X- xo» - f(xo»).
Vi f co d<;1ohamtheohuangt<;1iXotheomQihuangx - Xonen
f(x) >f(xo)+f'(xo)(x- xo).
K@thQpvai gia thi@tf'(xo)(x - xo)>0,\/xE A, taduQc
f(xo)<f(x),\/xE A.
V~yXola di@mQic ti@ucuaanhX<;1f trenA. D
1.2.2 D~oham Gateaux va d~oham Frechet
Dinh nghia 1.2.2. (Xem[23j)Girl8U'(X, 11.llx)va (Y, 11.lly)la cackh6nggian
dinkchuan,A c X lat4pmd,khac4;,XoE A vaanhX(,Lf : A -t Y. N€u, \/h E X,
gidi h(,Ln
. 1
f'(xo)(h) := hm \ (f(xo +Ah)- f(xo»),A-->O/\ (1.14)
t6n t(,Liva f' (xo)(h) la anhX(,Ltuy€n link lien t'I,LCtitX VaGY thzf' (xo)(h) dur;c
gQila d(,LohamGateauxcuaf t(,LiXova anhX(,Lf dur;cgQila khrlvi Gateauxt(,LiXo.
Dinh nghia 1.2.3. (Xem[23j)Girl8U'(X, 11.llx)va (Y, 11.lly)la cackh6nggian
dinkchuan,A c X la t4pmd,khac4;,XoE A va anhX(,Lf : A -t Y. N€u t6ntq,i
rinhxq,tuy€n link lien t'I,LCf'(XO) : X -t Y thoaman
1. Ilf(xo+h)- f(xo)- f'(xo)(h)11 01m -t ,
Ilhll-->O Ilhll
(1.15)
thzf'(XO) dur;cgQila dq,ohamFrechetcuaf tq,iXova anhxq,f dur;cgQila khrlvi
Frechettq,iXo.
M5i lienh~giUad<;1ohamFrechetvad<;1ohamGateauxth@hi~ntrongk@tqua
sail.
Trang14
?D!nh 1:5'1.2.2. Gia sV:(X, 11.llx)va (Y, 11.lly)la cac kh6nggian dink chuan,
A c X la t(ipl6i, md,khacrjJ,XoE A vaanhX(lf : A ~ Y. Khi d6n€u f khavi
Fnichet t(li Xo thzf ding kha vi Gateauxt(li Xo va hai d(lo ham nay trung nhau.
M6i lien h~giila d1;:Loham Frechetva tint lien t1).C,tint 16icua ant X1;:Lth@hi~n
trongcacdint ly sau.
?
D!nh 1:5'1.2.3. Gia sV: (X, 11.llx)va (Y, 11.lly)la cac kh6ng gian dink chuan,
A c X la t(ipmd, khacrjJ,XoE A va anhX(lf : X ~ Y. Khi d6 n€u f khavi
Fnichet t(li Xo thzf lien t7;,ct(li Xo.
D!nh 1:5'1.2.4. Gia sV:(X, 11.11)la kh6nggian dink chuan,A c X la t(ipMi, md,
khacrjJva anhX(lf : A ~ R kha vi Fnichet t(li m9i diim Xo E A. Khi d6f laham
l6i n€u va ch:tn€u, Vx,YEA,
f(y) >f(x) +f'(x)(y - x). (1.16)
Changmink.
(i) Gia S11f la ham16i.Khi d6 Vx,YEA, V)'"E [0,1]
f(x +)...(y- x) <)...f(y)+(1- )...)f(x).
Tli d6 ta c6
1
f(y) > f(x) +)...(f(x) +)...(y- x)) - f(x)).
VI f khavi Frecheti;1imQix E A nen
f'(x)(y - x) = lim ~ (f(x + )...(y- x)) - f(x)).A~O+/\
Do d6Vx,yEA
f(y) >f(x) +f'(x)(y- x).
(ii) Dao11;:Li,gia S11(1.16)thoaman.Do A la t~p16inen
f(x) >f()...x+ (1- )...)y)+ f'()...x+ (1- )...)y)((l- )...)(x- y))
va
f(y) >f()...x+(1- )...)y)+ f'()...x+(1- )...)y)((-)...)(x- y)).
Trang15
Vi J'(x)(.) la anhXi:Ltuy§n tfnh nell,'\Ix,YEA, VA E (0,1],
Af(x) +(1- A)f(y) > Af(AX+(1- A)Y)
+ A(1- A)J'(AX + (1- A)Y)(X- y)
+ (1- A)f(AX + (1 - A)Y)
- A(1- A)f'(AX + (1 - A)Y)(X- y)
- f(AX + (1- A)Y).
V~yf la ham16i. D
D!nhly 1.2.5.Giasit(X, II.IDlakh6ngiandinkchutinvaanhxq,f :X ---t R.
/ ?,
NeuXoE X la diemc7jCtieucuaf trenX vaf khavi Gateauxtq,iXothz,VhE X,
f'(x)(h) =O. (1.17)
H~thlic (1.17)la di@uki~nc~nd@Xola di@mC1!Cti@ucuaanhXi:Lf.
1.2.3 Du'di vi phan
Gia sa (X, 11.11)la kh6nggiandinh chuiin.
D!nh nghia 1.2.4. Gia sit anhxq,f : X ---t R lahaml6itrenX vaX* lakh6ng
gianddingautap6cuaX. V6imtJiXoEX, t4p
8f(xo):={x*E X*/ f(x) > f(xo)+x*(x- xo),'\IxEX}, (1.18)
dvx;c99i la du6ivi phancua anhxq,f tq,iXova mtJiphi€n hamx* E 8f(xo) dUr;fC
99i la du6igradientcua anhxq,f tq,iXo.
Vi d\l 1.2.1.Giasit(X, II.IDlakh6ngianBanachvaf(x) =Ilxll.Du6iviphan
rinhxq,f tq,ix E X dur;fCtinhnhusau.
. N€u x -#0 thz
8f(x) = {x*E X*/llx*11= 1,(x*,x)= Ilxll}.
. N€u x =0 thz
8f(0)={x*E X* /llx*11< I}.
Trang16
Dij,cbi~tneugid siJ:X = R vaf(x) = Ilxllthi
8f(x) = {{llxll-lx}, n~ux #0;(-i,i), neu x - o.
Dinh ly 1.2.6. Gid siJ:anhxq,f : x ~ R la hamlei trenX. Khi d6XoE X la
7 7
diem qtc lieu cuaf trenX khi va chi khi Ox E 8f(xo).
1.2.4 D~o ham Clarke
Cia S11(X, 1.11)180kh6ng gian dinh chu11n.
Dinh nghia 1.2.5. (Xem (23j) Gid siJ:anhxq,f : X ~ R, Xo E X vahEX.
Neu gidi hq,n
f'(xo)(h)= limsup ~(f(x +Ah)- f(x)),
x ~ Xo
A ~ 0+
(1.19)
ten tq,ithi j' (xo)(h) dU(fCgri la dq,oham Clarke cuaf tq,iXotheohudngh. Neuf
c6dq,oham Clarketq,iXo theomri hudnghEX thi f dU(fcgri la khavi Clarke
tq,iXo.
Vi d\l 1.2.2. Gid siJ:f : R ~ R dU(fCxac dink nhusauf(x) = Ilxll,"Ix E R Khi
d6 dq,oham Clarke tq,i0 cuaf theomri hudngh la
j'(O)(h) = limsup ~(11x+Ahll - Ilxll)= Ilhll.
x~O
A ~ 0+
Dinh ly 1.2.7.GidsiJ:f : X ~ R la haml8i, lien t7,lCLipschitztq,iXoEX. Khi
d6dq,ohamClarkecuaf tq,iXovadq,ohamtheohudngcuaf tq,iXo la trungnhau.
1.2.5 Non ti~p xuc
Dinh nghia 1.2.6. Gid siJ:(X, 11.11)la kh6nggiandink chulin,A c X la t(ipkhac
q;vaXoE A.
Trang17
(i) Vectdh du(Jc99i la vectdti€p tuytn cuat(j,pA t(LiXontu tiJn t(Liday(xn)c A,
day(An)C R+ th6aman
Xo= lirnXn,h = lirnAn(xn- xo).
n->oo n->oo
(1.20)
(ii) T(j,ph(JpTxoAcacvetdti€p tuytn cuaA t(LiXodu(Jc99i la non titp xucBouli-
~
gandtheodaycuaA t(LiXoho(icnon contingentcuaA t(LiXo.
Dinh ly 1.2.8.Cia s'll(X, 11.11)la kh6nggiandinkchutinvaA c X la t(j,pfiJi,
khaccp.Khi dovd'im9iXoE A non titp xuc contingentTxoA la t(j,pl6i.
1.3
,
Anh xa da tri. .
1.3.1 MQt 86khai ni~m
Cia s11X, Y la cackhanggianvectatapa,L(X,Y) la khanggiancacanhX9-
tuy@ntinhlient\lCtti'X vaaY vaF :X ---+2Y la anhX9-da trio
Dinh nghia 1.3.1.
(i) Mien hi~uquacua anhX(Lda tri F la t(j,p
damP:={xE XI F(x) -#cp}.
(ii) DiJ thi cua anhX(Lda tri F la t(j,p
graphF:= {(x,y)E X x Yly E F(x)}.
Dinh nghia 1.3.2. Anh X(Lda tri F du(Jc99i la liJi ntu graphF la t(j,pliJi tren
X x Y va F du(JC99i la dongntu graphF la t(j,pdongtrongX x Y.
Dinh nghia 1.3.3.
(i) AnhX(Ldatri F du(Jc99ila anhX(Ldatri giatri liJi ntuF(x) la t(j,pliJi voim9i
x E damP.
(ii) AnhX(Ldatri F du(Jc99ila anhX(Ldatri giatri dongntu F(x) la t(j,pdong
trongY voim9ix E damF.
Dinh nghia 1.3.4. Cia S'U:F : X ---+2Y la anhX(Lda trio
Trang18
(i) Anh xg, F dUf/C99i la mJ:a lien t'l),Ctren (vi~t tiit la u.s. c) tg,i Xo E damP n~u
vdi m9i lan c~nN cila F(xo), tOntg,i[(in c~nM cila Xo saD rho F(M) c N.
(ii) Anh xg,F duQc99i la mJ:alien t'l),Cdudi (vi~ttiit la l.s.c) tg,iXo E damP n~u
vdim9it~pmdU c Y thoamanUn F(xo) =Fcp,tOn tg,i lan c~nM cila XosaD
rho Un F(x) =F cp, \:Ix E M. ~
(iii) Anh xg,F dUf/C99i la nita lien t'l),Cdudi theoday (vi~ttiit la s.l.s.c) tg,iXodamP,
n~uvdi m9i Y E F(x), m9i day (xn) c damP vaXn -+ x, tOntg,iday(Yn)C F(xn)
saorhoYn -+ y.
(iv) Anh xg,da tri F duf/C99i la hemi lien t'l),Ctren (vi~ttiit la u.h.c) tg,iXoE damP
n~uvdi m9i x EX, anh xg,da tri a I---tF( ax + (1 - a)xo) la anh xg,nita lien t'l),C
tren tg,i0+.
(v) Cia sit t~pA c X va T : A -+ 2L(X,Y) la anh xg, da trio Anh xg, T dUf/C99i la
hemi lien t'l),ctren suy r{)ng(viti tiit la g.u.h.c) tg,iXo E A n~uvdi m9i x E A, vdi
m9i a E [0,1], anh xg, da tri a I---t(T(ax +(1- a)xo, x - xo) la anh xg,U.S.C tg,i
0+, trong do (T(x), z) la gia tri cila anh xg,tuy~ntinh T(x) E L(X, Y) tg,idi€m
z E X.
(vi) Cia sit t~pA c X vaT : X -+ 2L(X,Y) la anh xg,da trio Anh xg,T duf/C99i la
hemi lien t'l),Cdudi suy r{)ng(vi~ttiit la g.l.h.c) tg,iXo E A n~uvdi m9i x E A, vdi
m9i a E [0,1],anh xg, da tri a -+ (T(ax +(1- a)xo, x - xo) la anh xg,l.s.c tg,i
0+.
Dinh nghia 1.3.5. Cia sit t~pA eX, Y la khonggian tuy~ntinh dUf/Cslip bdi
non th(Ctv:C trongd6 C : Y -+ 2Y la anh xg,da tri thoa man, vdi moi Y E Y,
Cry}la nonlOi,dong,intO =Fcp.
(i) Anh xg,ddntri f : A -+ L(X, Y) duf/C99i la ddndi~u(monotone)trenA n~u
vdi m9i x E A, z E A
(j(z) - f(x), z - X)E Y\( -intC(x)). (1.21)
(ii) Anh xg,da tri T : A -+ 2L(X,Y) duf/c99i la ddn di~u (monotone) tren A n~u
vdim9i x E A, z E A, vdi m9i tx E T(x), tz E T(z)
(tz - tx, z - X)E Y\( -intC(x)). (1.22)
Trang 19
(iii) Anh X(Lda tri T : A ---+2L(X,Y)du(Jc99i la gid ddn difU (p8eudomonotone)
trenA neuv{jim9ix E A, z E A
[~sE T(x), (s, Z - X)E Y\( -intC(x))]
=* [ViE T(z), (t,z - X)E Y\( -intC(x))].
(1.23)
(iv) AnhX(Ldatri T : A ---+2L(X,Y)du(Jc99i la gidddndifUyen(weakp8eudomono-
tone)trenA neuv{jim9ix E A, z E A
[~sE T(x), (s,z - X,)E Y\( -intC(x))]
=* [~tE T(z),(t,z - X)E Y\(-intC(x))].
(1.24)
(iv) Gid 811T : A ---+2L(X,Y)la anhX(Lda tri va f : A x A ---+Y la anhX(Lddntrio
C~p(T,f) du(Jcg9ila c~pgidddndifUtrenA neu,v{jim9ix E A, z E A,
[~sE T(x), (s,z - x)+f(z, x) E Y\( -intC(x))]
=* [ViE T(x),(t,z - x)+f(z,x)EY\( -intC(x))].
(1.25)
(v) Gid 811T : A ---+2L(X,Y)la anhX(Ldatri vaf : A x A ---+Y la anhX(Lddntrio
C~p(T, f) du(Jc99i la c~pgid ddndifU yentrenA neu,v{jim9ix E A, z E A,
[~sE T(x),(s,z - x)+f(z,x)E Y\( -intC(x))]
=* [~tE T(x), (t,z - x)+f(z, x) E Y\( -intC(x))].
(1.26)
Dtnh Iy 1.3.1.
(i) Neu anhX(Lda tri F : X ---+2Y la anhX(Lda tri gia tri dongva n11alien t7j,C
trenthi F la anhX(Ldong.
(ii) Neu F(A) la t(ipcompactv{jim9iA c domF la t(ipcompactva F la anhX(L
dongthi F la anhX(Ln11alien t7j,Ctren.
1.3.2
., ..
Cae dtnh Iy diem bat dQng
Cia 811X la khanggianvectatapa.
Dtnhnghla1.3.6.(Xem[3J)Gid 811A c X vaF : A ---+2A la anhX(Ldatrio
Diim XoE A du(Jc99i la diembatd(Jngcuaanhxq,datri F trenA neuXoE F(xo).
D~cbift neuF la anhX(LddntTi thi Xo=F(xo).
Trang 20