Tổng hợp tài liệu Các Môn Đại Cương tham khảo cho học sinh, sinh viên.
(Bản scan) Giả sử rằng có thể khai triển hàm/(x) thành chuỗi lũy thừa tại a f(x) = c0 + c^x - ứ) 4- c2(x - a)2 + c3(x - ứ)3 + c4(x - a)4 4— I X - a I < R Chúng ta sẽ xác định các hệ số cn theo f và a. Neu đặt X = a ta có /(ứ) = CQ Ta có thể đạo hàm từng số hạng của chuỗi f(x) = cl 4- 2c2(x -a) + 3C3(X - a)2 4- 4c4(x -a)3 -ỉ— |x - a\ < R và th...
31 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 550 | Lượt tải: 0
(Bản scan) Định nghĩa: Chuỗi hàm số Sn=i un(x) được gọi là hội tụ đều đến S(x) trển tập Xnếu (Vs > 0)(3n(é) 6 ró) |sn(x) — s(x)| < E, Yn > n(e), Vx 6 X Nhắc lại: Chuồi hàm so Sn=i un(%) được gọi là hội tụ điểm đến S(x) trên tập” X nếu (Vx 6 X)(V£ > 0)(3n(x, e) ể M) |sn(x) — s(x) I < E, vú > n(x, È) Ta có thể sử dụng kết quả sau đây để nhận biế...
11 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 509 | Lượt tải: 0
(Bản scan) 1. Chuỗi có dạng gần giống z ỉ/nP, mà ta đã biết hội tụ khi p > 1 và phân kỳ khi p < 1. 2. Chuỗi có dạng tương tự chuỗi lũy thừa z arn, hội tụ khi I r I < 1 và phân kỳ khi I r I > 1. Nhiều khi phải biến đôi một chút để đưa về dạng này. 3. Nếu chuỗi có dạng gần giống hai dạng trên, ta có thể thực hiện tiêu chuân so sáng. Đặc biệt khi a...
6 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 482 | Lượt tải: 0
(Bản scan) Câu hỏi là khi nào một chuỗi là hội tụ tuyệt đối hay có điều kiên cũng tương tự như câu hỏi khi nào một chuỗi có đặc điểm tương tự tông hữu hạn. Neu chúng ta sắp xếp lại số hạng của một tổng hữu hạn, đương nhiên giá trị của tông là không đôi. Nhưng điều này không đúng với chuỗi.
26 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 508 | Lượt tải: 0
(Bản scan) Tuy nhiên, chúng ta có thê thây s 1/(2"— 1) phải hội tụ vì nó khá giông Trong trường hợp này, ta có thể sử dụng kết quả sau. Định lý (Tiêu chuẩn so sánh 2, hay tiêu chuân so sánh giới hạn): Cho hai chuỗi số dương SF=1 an và XF=1 bn, đồng thời limn_>00 -^ = c, với c là một sô dương hữu hạn nào đó. Khi đó hai chuôi là cùng hội tụ hay cù...
23 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 432 | Lượt tải: 0
(Bản scan) Định lý: Nếu chuồi Zn=l an hội tụ thì lim,,^ 00 an = 0 Mệnh đề đảo của định lý này không đúng trong trường họp tổng quát (ví dụ chuôi điêu hòa). Neu lim,,^ (X)an = 0, ta không the kết luận được là chuỗi z an hội tụ. Hệ quả: Neu lim,,-). 00 * 0 thì chuỗi Zn=i an phân kỳ.
13 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 522 | Lượt tải: 0
(Bản scan) PTVP TT cấp hai không thuần nhất y" + p(x)y' + p(x)y = f(x) (1) ® PTVP TT cấp hai thuần nhất y" + p(x)y' + q(x)y = 0. (2) Nhận xét: NTQ của (1) = NTQ của (2) + Nghiệm riêng của (1). Phương pháp biến thiên hằng số Lagrange a Giả sử tìm được NTQ của (2) là y = Ciyi(x) + C2y2(x). ® Cho C1 và C2 biến thiên, i.e., Cl = Ci(x), C2 = Ơ2(x) ...
19 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 409 | Lượt tải: 0
(Bản scan) Phương pháp biên thiên hằng sô ® Giải PTVP tuyến tính cấp một thuần nhất y' + p(x)y = nghiệm tổng quát là y = Ce~J p(x)dx. ® Cho hằng số c biến thiên, i.e., c = C(x) phụ thuộc vào y = C(x)e"-/p(x)dx. a Thay vào phương trình y' + p(x)y = q(x) và giải ra
17 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 359 | Lượt tải: 0
Nguyên hàm: Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên tập xác định D nếu đạo hàm của F(x) là f(x), tức là F’(x) = f(x), Nhận xét: Hiển nhiên nếu hàm f(x) có một nguyên hàm thì nó sẽ có vô số nguyên hàm và hai nguyên hàm bất kỳ của f(x) chỉ sai khác nhau một hằng số. Tích phân bất định: Tập hợp tất cả các nguyên hàm của hàm số ...
3 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 437 | Lượt tải: 1
A. Định nghĩa và điều kiện cần của cực trị Điểm M0(x0,y0) R2 gọi là điểm cực đại (địa phương) của hàm f(M) nếu có lân cận đủ bé của M0 để trong lân cận đó (trừ M0 ) xảy ra bất đẳng thức f(M) < f( M0 ) Tương tự ta có khái niệm điểm cực tiểu (địa phương) của hàm số f(M). Điểm M x y 0 0 0 , trong các trường hợp trên gọi chung là điểm cực trị...
21 trang | Chia sẻ: hachi492 | Ngày: 04/01/2022 | Lượt xem: 382 | Lượt tải: 1
Copyright © 2024 Tai-Lieu.com - Hướng dẫn học sinh giải bài tập trong SGK, Thư viện sáng kiến kinh nghiệm hay, Thư viện đề thi